ladybird/Tests/AK/TestStatistics.cpp
Staubfinger da1023fcc5 AK: Add thresholds to quickselect_inline and Statistics::Median
I did a bit of Profiling and made the quickselect and median algorithms
use the best of option for the respective input size.
2023-02-03 19:04:15 +01:00

70 lines
2.2 KiB
C++

/*
* Copyright (c) 2023, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Statistics.h>
#include <LibTest/TestSuite.h>
TEST_CASE(Statistics)
{
// Setup Test Data
AK::Statistics<double> odd_number_elements;
AK::Statistics<double> even_number_elements;
AK::Statistics<double> odd_number_elements_large;
AK::Statistics<double> even_number_elements_large;
odd_number_elements.add(5.0);
odd_number_elements.add(4.0);
odd_number_elements.add(3.0);
odd_number_elements.add(2.0);
odd_number_elements.add(1.0);
even_number_elements.add(6.0);
even_number_elements.add(5.0);
even_number_elements.add(4.0);
even_number_elements.add(3.0);
even_number_elements.add(2.0);
even_number_elements.add(1.0);
for (int i = 201; i > 0; i--) {
odd_number_elements_large.add(i);
}
for (int i = 360; i > 0; i--) {
even_number_elements_large.add(i);
}
// Sum
EXPECT_APPROXIMATE(odd_number_elements.sum(), 15.0);
EXPECT_APPROXIMATE(even_number_elements.sum(), 21.0);
// Average
EXPECT_APPROXIMATE(odd_number_elements.average(), 3.0);
EXPECT_APPROXIMATE(even_number_elements.average(), 3.5);
// Min
EXPECT_APPROXIMATE(odd_number_elements.min(), 1.0);
EXPECT_APPROXIMATE(even_number_elements.min(), 1.0);
// Max
EXPECT_APPROXIMATE(odd_number_elements.max(), 5.0);
EXPECT_APPROXIMATE(even_number_elements.max(), 6.0);
// Median
EXPECT_APPROXIMATE(odd_number_elements.median(), 3.0);
EXPECT_APPROXIMATE(even_number_elements.median(), 3.5);
EXPECT_APPROXIMATE(odd_number_elements_large.median(), 101.0);
EXPECT_APPROXIMATE(even_number_elements_large.median(), 180.5);
// The expected values for standard deviation and variance were calculated by my school issued scientific calculator
// Standard Deviation
EXPECT_APPROXIMATE(odd_number_elements.standard_deviation(), 1.4142135623731);
EXPECT_APPROXIMATE(even_number_elements.standard_deviation(), 1.7078251276599);
// Variance
EXPECT_APPROXIMATE(odd_number_elements.variance(), 2.0);
EXPECT_APPROXIMATE(even_number_elements.variance(), 2.9166666666667);
}