ladybird/Libraries/LibCrypto/PK/RSA.h

262 lines
7.7 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Span.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
#include <LibCrypto/PK/PK.h>
namespace Crypto::PK {
template<typename Integer = UnsignedBigInteger>
class RSAPublicKey {
public:
RSAPublicKey(Integer n, Integer e)
: m_modulus(move(n))
, m_public_exponent(move(e))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPublicKey()
: m_modulus(0)
, m_public_exponent(0)
{
}
Integer const& modulus() const { return m_modulus; }
Integer const& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
ErrorOr<ByteBuffer> export_as_der() const
{
ASN1::Encoder encoder;
TRY(encoder.write_constructed(ASN1::Class::Universal, ASN1::Kind::Sequence, [&]() -> ErrorOr<void> {
TRY(encoder.write(m_modulus));
TRY(encoder.write(m_public_exponent));
return {};
}));
return encoder.finish();
}
void set(Integer n, Integer e)
{
m_modulus = move(n);
m_public_exponent = move(e);
m_length = (m_modulus.trimmed_length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename Integer = UnsignedBigInteger>
class RSAPrivateKey {
public:
RSAPrivateKey(Integer n, Integer d, Integer e, Integer p, Integer q)
: m_modulus(move(n))
, m_private_exponent(move(d))
, m_public_exponent(move(e))
, m_prime_1(move(p))
, m_prime_2(move(q))
, m_exponent_1(NumberTheory::Mod(m_private_exponent, m_prime_1.minus(1)))
, m_exponent_2(NumberTheory::Mod(m_private_exponent, m_prime_2.minus(1)))
, m_coefficient(NumberTheory::ModularInverse(m_prime_2, m_prime_1))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPrivateKey(Integer n, Integer d, Integer e, Integer p, Integer q, Integer dp, Integer dq, Integer qinv)
: m_modulus(move(n))
, m_private_exponent(move(d))
, m_public_exponent(move(e))
, m_prime_1(move(p))
, m_prime_2(move(q))
, m_exponent_1(move(dp))
, m_exponent_2(move(dq))
, m_coefficient(move(qinv))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPrivateKey() = default;
static RSAPrivateKey from_crt(Integer n, Integer e, Integer p, Integer q, Integer dp, Integer dq, Integer qinv)
{
auto phi = p.minus(1).multiplied_by(q.minus(1));
auto d = NumberTheory::ModularInverse(e, phi);
return { n, d, e, p, q, dp, dq, qinv };
}
Integer const& modulus() const { return m_modulus; }
Integer const& private_exponent() const { return m_private_exponent; }
Integer const& public_exponent() const { return m_public_exponent; }
Integer const& prime1() const { return m_prime_1; }
Integer const& prime2() const { return m_prime_2; }
Integer const& exponent1() const { return m_exponent_1; }
Integer const& exponent2() const { return m_exponent_2; }
Integer const& coefficient() const { return m_coefficient; }
size_t length() const { return m_length; }
ErrorOr<ByteBuffer> export_as_der() const
{
ASN1::Encoder encoder;
TRY(encoder.write_constructed(ASN1::Class::Universal, ASN1::Kind::Sequence, [&]() -> ErrorOr<void> {
TRY(encoder.write(0x00u)); // version
TRY(encoder.write(m_modulus));
TRY(encoder.write(m_public_exponent));
TRY(encoder.write(m_private_exponent));
TRY(encoder.write(m_prime_1));
TRY(encoder.write(m_prime_2));
TRY(encoder.write(m_exponent_1));
TRY(encoder.write(m_exponent_2));
TRY(encoder.write(m_coefficient));
return {};
}));
return encoder.finish();
}
private:
Integer m_modulus;
Integer m_private_exponent;
Integer m_public_exponent;
Integer m_prime_1;
Integer m_prime_2;
Integer m_exponent_1; // d mod (p-1)
Integer m_exponent_2; // d mod (q-1)
Integer m_coefficient; // q^-1 mod p
size_t m_length { 0 };
};
template<typename PubKey, typename PrivKey>
struct RSAKeyPair {
PubKey public_key;
PrivKey private_key;
};
using IntegerType = UnsignedBigInteger;
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
public:
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
static KeyPairType parse_rsa_key(ReadonlyBytes der);
static KeyPairType generate_key_pair(size_t bits = 256, IntegerType e = 65537)
{
IntegerType p;
IntegerType q;
IntegerType lambda;
do {
p = NumberTheory::random_big_prime(bits / 2);
q = NumberTheory::random_big_prime(bits / 2);
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
} while (!(NumberTheory::GCD(e, lambda) == 1));
auto n = p.multiplied_by(q);
auto d = NumberTheory::ModularInverse(e, lambda);
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e, p, q }
};
return keys;
}
RSA(IntegerType n, IntegerType d, IntegerType e)
{
m_public_key.set(n, e);
m_private_key = { n, d, e, 0, 0, 0, 0, 0 };
}
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
{
}
RSA(ByteBuffer const& publicKeyPEM, ByteBuffer const& privateKeyPEM)
{
import_public_key(publicKeyPEM);
import_private_key(privateKeyPEM);
}
RSA(StringView privKeyPEM)
{
import_private_key(privKeyPEM.bytes());
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
}
// create our own keys
RSA()
{
auto pair = generate_key_pair();
m_public_key = pair.public_key;
m_private_key = pair.private_key;
}
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes in, Bytes& out) override;
virtual void verify(ReadonlyBytes in, Bytes& out) override;
virtual ByteString class_name() const override
{
return "RSA";
}
virtual size_t output_size() const override
{
return m_public_key.length();
}
void import_public_key(ReadonlyBytes, bool pem = true);
void import_private_key(ReadonlyBytes, bool pem = true);
PrivateKeyType const& private_key() const { return m_private_key; }
PublicKeyType const& public_key() const { return m_public_key; }
void set_public_key(PublicKeyType const& key) { m_public_key = key; }
void set_private_key(PrivateKeyType const& key) { m_private_key = key; }
};
class RSA_PKCS1_EME : public RSA {
public:
// forward all constructions to RSA
template<typename... Args>
RSA_PKCS1_EME(Args... args)
: RSA(args...)
{
}
~RSA_PKCS1_EME() = default;
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes, Bytes&) override;
virtual void verify(ReadonlyBytes, Bytes&) override;
virtual ByteString class_name() const override
{
return "RSA_PKCS1-EME";
}
virtual size_t output_size() const override
{
return m_public_key.length();
}
};
}