mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 15:40:19 +00:00
262 lines
7.7 KiB
C++
262 lines
7.7 KiB
C++
/*
|
|
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
|
|
* Copyright (c) 2022, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Span.h>
|
|
#include <LibCrypto/ASN1/DER.h>
|
|
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
|
|
#include <LibCrypto/NumberTheory/ModularFunctions.h>
|
|
#include <LibCrypto/PK/PK.h>
|
|
|
|
namespace Crypto::PK {
|
|
|
|
template<typename Integer = UnsignedBigInteger>
|
|
class RSAPublicKey {
|
|
public:
|
|
RSAPublicKey(Integer n, Integer e)
|
|
: m_modulus(move(n))
|
|
, m_public_exponent(move(e))
|
|
, m_length(m_modulus.trimmed_length() * sizeof(u32))
|
|
{
|
|
}
|
|
|
|
RSAPublicKey()
|
|
: m_modulus(0)
|
|
, m_public_exponent(0)
|
|
{
|
|
}
|
|
|
|
Integer const& modulus() const { return m_modulus; }
|
|
Integer const& public_exponent() const { return m_public_exponent; }
|
|
size_t length() const { return m_length; }
|
|
void set_length(size_t length) { m_length = length; }
|
|
|
|
ErrorOr<ByteBuffer> export_as_der() const
|
|
{
|
|
ASN1::Encoder encoder;
|
|
TRY(encoder.write_constructed(ASN1::Class::Universal, ASN1::Kind::Sequence, [&]() -> ErrorOr<void> {
|
|
TRY(encoder.write(m_modulus));
|
|
TRY(encoder.write(m_public_exponent));
|
|
return {};
|
|
}));
|
|
|
|
return encoder.finish();
|
|
}
|
|
|
|
void set(Integer n, Integer e)
|
|
{
|
|
m_modulus = move(n);
|
|
m_public_exponent = move(e);
|
|
m_length = (m_modulus.trimmed_length() * sizeof(u32));
|
|
}
|
|
|
|
private:
|
|
Integer m_modulus;
|
|
Integer m_public_exponent;
|
|
size_t m_length { 0 };
|
|
};
|
|
|
|
template<typename Integer = UnsignedBigInteger>
|
|
class RSAPrivateKey {
|
|
public:
|
|
RSAPrivateKey(Integer n, Integer d, Integer e, Integer p, Integer q)
|
|
: m_modulus(move(n))
|
|
, m_private_exponent(move(d))
|
|
, m_public_exponent(move(e))
|
|
, m_prime_1(move(p))
|
|
, m_prime_2(move(q))
|
|
, m_exponent_1(NumberTheory::Mod(m_private_exponent, m_prime_1.minus(1)))
|
|
, m_exponent_2(NumberTheory::Mod(m_private_exponent, m_prime_2.minus(1)))
|
|
, m_coefficient(NumberTheory::ModularInverse(m_prime_2, m_prime_1))
|
|
, m_length(m_modulus.trimmed_length() * sizeof(u32))
|
|
{
|
|
}
|
|
|
|
RSAPrivateKey(Integer n, Integer d, Integer e, Integer p, Integer q, Integer dp, Integer dq, Integer qinv)
|
|
: m_modulus(move(n))
|
|
, m_private_exponent(move(d))
|
|
, m_public_exponent(move(e))
|
|
, m_prime_1(move(p))
|
|
, m_prime_2(move(q))
|
|
, m_exponent_1(move(dp))
|
|
, m_exponent_2(move(dq))
|
|
, m_coefficient(move(qinv))
|
|
, m_length(m_modulus.trimmed_length() * sizeof(u32))
|
|
{
|
|
}
|
|
|
|
RSAPrivateKey() = default;
|
|
|
|
static RSAPrivateKey from_crt(Integer n, Integer e, Integer p, Integer q, Integer dp, Integer dq, Integer qinv)
|
|
{
|
|
auto phi = p.minus(1).multiplied_by(q.minus(1));
|
|
auto d = NumberTheory::ModularInverse(e, phi);
|
|
|
|
return { n, d, e, p, q, dp, dq, qinv };
|
|
}
|
|
|
|
Integer const& modulus() const { return m_modulus; }
|
|
Integer const& private_exponent() const { return m_private_exponent; }
|
|
Integer const& public_exponent() const { return m_public_exponent; }
|
|
Integer const& prime1() const { return m_prime_1; }
|
|
Integer const& prime2() const { return m_prime_2; }
|
|
Integer const& exponent1() const { return m_exponent_1; }
|
|
Integer const& exponent2() const { return m_exponent_2; }
|
|
Integer const& coefficient() const { return m_coefficient; }
|
|
size_t length() const { return m_length; }
|
|
|
|
ErrorOr<ByteBuffer> export_as_der() const
|
|
{
|
|
ASN1::Encoder encoder;
|
|
TRY(encoder.write_constructed(ASN1::Class::Universal, ASN1::Kind::Sequence, [&]() -> ErrorOr<void> {
|
|
TRY(encoder.write(0x00u)); // version
|
|
TRY(encoder.write(m_modulus));
|
|
TRY(encoder.write(m_public_exponent));
|
|
TRY(encoder.write(m_private_exponent));
|
|
TRY(encoder.write(m_prime_1));
|
|
TRY(encoder.write(m_prime_2));
|
|
TRY(encoder.write(m_exponent_1));
|
|
TRY(encoder.write(m_exponent_2));
|
|
TRY(encoder.write(m_coefficient));
|
|
return {};
|
|
}));
|
|
|
|
return encoder.finish();
|
|
}
|
|
|
|
private:
|
|
Integer m_modulus;
|
|
Integer m_private_exponent;
|
|
Integer m_public_exponent;
|
|
Integer m_prime_1;
|
|
Integer m_prime_2;
|
|
Integer m_exponent_1; // d mod (p-1)
|
|
Integer m_exponent_2; // d mod (q-1)
|
|
Integer m_coefficient; // q^-1 mod p
|
|
size_t m_length { 0 };
|
|
};
|
|
|
|
template<typename PubKey, typename PrivKey>
|
|
struct RSAKeyPair {
|
|
PubKey public_key;
|
|
PrivKey private_key;
|
|
};
|
|
|
|
using IntegerType = UnsignedBigInteger;
|
|
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
|
|
public:
|
|
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
|
|
|
|
static KeyPairType parse_rsa_key(ReadonlyBytes der);
|
|
static KeyPairType generate_key_pair(size_t bits = 256, IntegerType e = 65537)
|
|
{
|
|
IntegerType p;
|
|
IntegerType q;
|
|
IntegerType lambda;
|
|
|
|
do {
|
|
p = NumberTheory::random_big_prime(bits / 2);
|
|
q = NumberTheory::random_big_prime(bits / 2);
|
|
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
|
|
} while (!(NumberTheory::GCD(e, lambda) == 1));
|
|
|
|
auto n = p.multiplied_by(q);
|
|
|
|
auto d = NumberTheory::ModularInverse(e, lambda);
|
|
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
|
|
{ n, e },
|
|
{ n, d, e, p, q }
|
|
};
|
|
return keys;
|
|
}
|
|
|
|
RSA(IntegerType n, IntegerType d, IntegerType e)
|
|
{
|
|
m_public_key.set(n, e);
|
|
m_private_key = { n, d, e, 0, 0, 0, 0, 0 };
|
|
}
|
|
|
|
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
|
|
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
|
|
{
|
|
}
|
|
|
|
RSA(ByteBuffer const& publicKeyPEM, ByteBuffer const& privateKeyPEM)
|
|
{
|
|
import_public_key(publicKeyPEM);
|
|
import_private_key(privateKeyPEM);
|
|
}
|
|
|
|
RSA(StringView privKeyPEM)
|
|
{
|
|
import_private_key(privKeyPEM.bytes());
|
|
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
|
|
}
|
|
|
|
// create our own keys
|
|
RSA()
|
|
{
|
|
auto pair = generate_key_pair();
|
|
m_public_key = pair.public_key;
|
|
m_private_key = pair.private_key;
|
|
}
|
|
|
|
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual void sign(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void verify(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual ByteString class_name() const override
|
|
{
|
|
return "RSA";
|
|
}
|
|
|
|
virtual size_t output_size() const override
|
|
{
|
|
return m_public_key.length();
|
|
}
|
|
|
|
void import_public_key(ReadonlyBytes, bool pem = true);
|
|
void import_private_key(ReadonlyBytes, bool pem = true);
|
|
|
|
PrivateKeyType const& private_key() const { return m_private_key; }
|
|
PublicKeyType const& public_key() const { return m_public_key; }
|
|
|
|
void set_public_key(PublicKeyType const& key) { m_public_key = key; }
|
|
void set_private_key(PrivateKeyType const& key) { m_private_key = key; }
|
|
};
|
|
|
|
class RSA_PKCS1_EME : public RSA {
|
|
public:
|
|
// forward all constructions to RSA
|
|
template<typename... Args>
|
|
RSA_PKCS1_EME(Args... args)
|
|
: RSA(args...)
|
|
{
|
|
}
|
|
|
|
~RSA_PKCS1_EME() = default;
|
|
|
|
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
|
|
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
|
|
|
|
virtual void sign(ReadonlyBytes, Bytes&) override;
|
|
virtual void verify(ReadonlyBytes, Bytes&) override;
|
|
|
|
virtual ByteString class_name() const override
|
|
{
|
|
return "RSA_PKCS1-EME";
|
|
}
|
|
|
|
virtual size_t output_size() const override
|
|
{
|
|
return m_public_key.length();
|
|
}
|
|
};
|
|
}
|