ladybird/Kernel/Net/E1000NetworkAdapter.cpp
Andreas Kling e362b56b4f Kernel: Move kernel above the 3GB virtual address mark
The kernel and its static data structures are no longer identity-mapped
in the bottom 8MB of the address space, but instead move above 3GB.

The first 8MB above 3GB are pseudo-identity-mapped to the bottom 8MB of
the physical address space. But things don't have to stay this way!

Thanks to Jesse who made an earlier attempt at this, it was really easy
to get device drivers working once the page tables were in place! :^)

Fixes #734.
2020-01-17 22:34:26 +01:00

400 lines
12 KiB
C++

#include <Kernel/IO.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Thread.h>
//#define E1000_DEBUG
#define REG_CTRL 0x0000
#define REG_STATUS 0x0008
#define REG_EEPROM 0x0014
#define REG_CTRL_EXT 0x0018
#define REG_IMASK 0x00D0
#define REG_RCTRL 0x0100
#define REG_RXDESCLO 0x2800
#define REG_RXDESCHI 0x2804
#define REG_RXDESCLEN 0x2808
#define REG_RXDESCHEAD 0x2810
#define REG_RXDESCTAIL 0x2818
#define REG_TCTRL 0x0400
#define REG_TXDESCLO 0x3800
#define REG_TXDESCHI 0x3804
#define REG_TXDESCLEN 0x3808
#define REG_TXDESCHEAD 0x3810
#define REG_TXDESCTAIL 0x3818
#define REG_RDTR 0x2820 // RX Delay Timer Register
#define REG_RXDCTL 0x3828 // RX Descriptor Control
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
// STATUS Register
#define STATUS_FD 0x01
#define STATUS_LU 0x02
#define STATUS_TXOFF 0x08
#define STATUS_SPEED 0xC0
#define STATUS_SPEED_10MB 0x00
#define STATUS_SPEED_100MB 0x40
#define STATUS_SPEED_1000MB1 0x80
#define STATUS_SPEED_1000MB2 0xC0
OwnPtr<E1000NetworkAdapter> E1000NetworkAdapter::autodetect()
{
static const PCI::ID qemu_bochs_vbox_id = { 0x8086, 0x100e };
PCI::Address found_address;
PCI::enumerate_all([&](const PCI::Address& address, PCI::ID id) {
if (id == qemu_bochs_vbox_id) {
found_address = address;
return;
}
});
if (found_address.is_null())
return nullptr;
u8 irq = PCI::get_interrupt_line(found_address);
return make<E1000NetworkAdapter>(found_address, irq);
}
E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, u8 irq)
: IRQHandler(irq)
, m_pci_address(pci_address)
{
set_interface_name("e1k");
kprintf("E1000: Found at PCI address @ %w:%b:%b.%b\n", pci_address.seg(), pci_address.bus(), pci_address.slot(), pci_address.function());
enable_bus_mastering(m_pci_address);
size_t mmio_base_size = PCI::get_BAR_Space_Size(pci_address, 0);
m_mmio_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(m_pci_address))), PAGE_ROUND_UP(mmio_base_size), "E1000 MMIO", Region::Access::Read | Region::Access::Write, false, false);
m_mmio_base = m_mmio_region->vaddr();
m_use_mmio = true;
m_io_base = PCI::get_BAR1(m_pci_address) & ~1;
m_interrupt_line = PCI::get_interrupt_line(m_pci_address);
kprintf("E1000: IO port base: %w\n", m_io_base);
kprintf("E1000: MMIO base: P%x\n", PCI::get_BAR0(pci_address) & 0xfffffffc);
kprintf("E1000: MMIO base size: %u bytes\n", mmio_base_size);
kprintf("E1000: Interrupt line: %u\n", m_interrupt_line);
detect_eeprom();
kprintf("E1000: Has EEPROM? %u\n", m_has_eeprom);
read_mac_address();
const auto& mac = mac_address();
kprintf("E1000: MAC address: %b:%b:%b:%b:%b:%b\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
initialize_rx_descriptors();
initialize_tx_descriptors();
out32(REG_IMASK, 0x1f6dc);
out32(REG_IMASK, 0xff & ~4);
in32(0xc0);
enable_irq();
}
E1000NetworkAdapter::~E1000NetworkAdapter()
{
}
void E1000NetworkAdapter::handle_irq()
{
out32(REG_IMASK, 0x1);
u32 status = in32(0xc0);
if (status & 4) {
u32 flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
if (status & 0x10) {
// Threshold OK?
}
if (status & 0x80) {
receive();
}
m_wait_queue.wake_all();
}
void E1000NetworkAdapter::detect_eeprom()
{
out32(REG_EEPROM, 0x1);
for (volatile int i = 0; i < 999; ++i) {
u32 data = in32(REG_EEPROM);
if (data & 0x10) {
m_has_eeprom = true;
return;
}
}
m_has_eeprom = false;
}
u32 E1000NetworkAdapter::read_eeprom(u8 address)
{
u16 data = 0;
u32 tmp = 0;
if (m_has_eeprom) {
out32(REG_EEPROM, ((u32)address << 8) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
;
} else {
out32(REG_EEPROM, ((u32)address << 2) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
;
}
data = (tmp >> 16) & 0xffff;
return data;
}
void E1000NetworkAdapter::read_mac_address()
{
if (m_has_eeprom) {
u8 mac[6];
u32 tmp = read_eeprom(0);
mac[0] = tmp & 0xff;
mac[1] = tmp >> 8;
tmp = read_eeprom(1);
mac[2] = tmp & 0xff;
mac[3] = tmp >> 8;
tmp = read_eeprom(2);
mac[4] = tmp & 0xff;
mac[5] = tmp >> 8;
set_mac_address(mac);
} else {
ASSERT_NOT_REACHED();
}
}
bool E1000NetworkAdapter::link_up()
{
return (in32(REG_STATUS) & STATUS_LU);
}
void E1000NetworkAdapter::initialize_rx_descriptors()
{
auto ptr = (u32)kmalloc_eternal(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_rx_descriptors = (e1000_rx_desc*)ptr;
for (int i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = m_rx_descriptors[i];
auto addr = (u32)kmalloc_eternal(8192 + 16);
if (addr % 16)
addr = (addr + 16) - (addr % 16);
descriptor.addr = addr - 0xc0000000;
descriptor.status = 0;
}
out32(REG_RXDESCLO, (u32)ptr - 0xc0000000);
out32(REG_RXDESCHI, 0);
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
out32(REG_RXDESCHEAD, 0);
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
}
void E1000NetworkAdapter::initialize_tx_descriptors()
{
auto ptr = (u32)kmalloc_eternal(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_tx_descriptors = (e1000_tx_desc*)ptr;
for (int i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = m_tx_descriptors[i];
auto addr = (u32)kmalloc_eternal(8192 + 16);
if (addr % 16)
addr = (addr + 16) - (addr % 16);
descriptor.addr = addr - 0xc0000000;
descriptor.cmd = 0;
}
out32(REG_TXDESCLO, (u32)ptr - 0xc0000000);
out32(REG_TXDESCHI, 0);
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
out32(REG_TXDESCHEAD, 0);
out32(REG_TXDESCTAIL, 0);
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
out32(REG_TIPG, 0x0060200A);
}
void E1000NetworkAdapter::out8(u16 address, u8 data)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: OUT @ 0x%x\n", address);
#endif
if (m_use_mmio) {
auto* ptr = (volatile u8*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out8(m_io_base + address, data);
}
void E1000NetworkAdapter::out16(u16 address, u16 data)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: OUT @ 0x%x\n", address);
#endif
if (m_use_mmio) {
auto* ptr = (volatile u16*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out16(m_io_base + address, data);
}
void E1000NetworkAdapter::out32(u16 address, u32 data)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: OUT @ 0x%x\n", address);
#endif
if (m_use_mmio) {
auto* ptr = (volatile u32*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out32(m_io_base + address, data);
}
u8 E1000NetworkAdapter::in8(u16 address)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: IN @ 0x%x\n", address);
#endif
if (m_use_mmio)
return *(volatile u8*)(m_mmio_base.get() + address);
return IO::in8(m_io_base + address);
}
u16 E1000NetworkAdapter::in16(u16 address)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: IN @ 0x%x\n", address);
#endif
if (m_use_mmio)
return *(volatile u16*)(m_mmio_base.get() + address);
return IO::in16(m_io_base + address);
}
u32 E1000NetworkAdapter::in32(u16 address)
{
#ifdef E1000_DEBUG
dbgprintf("E1000: IN @ 0x%x\n", address);
#endif
if (m_use_mmio)
return *(volatile u32*)(m_mmio_base.get() + address);
return IO::in32(m_io_base + address);
}
void E1000NetworkAdapter::send_raw(const u8* data, int length)
{
disable_irq();
u32 tx_current = in32(REG_TXDESCTAIL);
#ifdef E1000_DEBUG
kprintf("E1000: Sending packet (%d bytes)\n", length);
#endif
auto& descriptor = m_tx_descriptors[tx_current];
ASSERT(length <= 8192);
auto *vptr = (void*)(descriptor.addr + 0xc0000000);
memcpy(vptr, data, length);
descriptor.length = length;
descriptor.status = 0;
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
#ifdef E1000_DEBUG
kprintf("E1000: Using tx descriptor %d (head is at %d)\n", tx_current, in32(REG_TXDESCHEAD));
#endif
tx_current = (tx_current + 1) % number_of_tx_descriptors;
out32(REG_TXDESCTAIL, tx_current);
cli();
enable_irq();
for (;;) {
if (descriptor.status) {
sti();
break;
}
current->wait_on(m_wait_queue);
}
#ifdef E1000_DEBUG
kprintf("E1000: Sent packet, status is now %b!\n", descriptor.status);
#endif
}
void E1000NetworkAdapter::receive()
{
u32 rx_current;
for (;;) {
rx_current = in32(REG_RXDESCTAIL);
if (rx_current == in32(REG_RXDESCHEAD))
return;
rx_current = (rx_current + 1) % number_of_rx_descriptors;
if (!(m_rx_descriptors[rx_current].status & 1))
break;
auto* buffer = (u8*)(m_rx_descriptors[rx_current].addr + 0xc0000000);
u16 length = m_rx_descriptors[rx_current].length;
#ifdef E1000_DEBUG
kprintf("E1000: Received 1 packet @ %p (%u) bytes!\n", buffer, length);
#endif
did_receive(buffer, length);
m_rx_descriptors[rx_current].status = 0;
out32(REG_RXDESCTAIL, rx_current);
}
}