ladybird/Libraries/LibGfx/Rect.h

471 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Format.h>
#include <LibGfx/Orientation.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include <LibGfx/TextAlignment.h>
#include <math.h>
namespace Gfx {
template<typename T>
T abst(T value)
{
return value < 0 ? -value : value;
}
template<typename T>
class Rect {
public:
Rect() { }
Rect(T x, T y, T width, T height)
: m_location(x, y)
, m_size(width, height)
{
}
template<typename U>
Rect(U x, U y, U width, U height)
: m_location(x, y)
, m_size(width, height)
{
}
Rect(const Point<T>& location, const Size<T>& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
Rect(const Point<U>& location, const Size<U>& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
explicit Rect(const Rect<U>& other)
: m_location(other.location())
, m_size(other.size())
{
}
bool is_null() const
{
return width() == 0 && height() == 0;
}
bool is_empty() const
{
return width() <= 0 || height() <= 0;
}
void move_by(T dx, T dy)
{
m_location.move_by(dx, dy);
}
void move_by(const Point<T>& delta)
{
m_location.move_by(delta);
}
Point<T> center() const
{
return { x() + width() / 2, y() + height() / 2 };
}
void set_location(const Point<T>& location)
{
m_location = location;
}
void set_size(const Size<T>& size)
{
m_size = size;
}
void set_size(T width, T height)
{
m_size.set_width(width);
m_size.set_height(height);
}
void inflate(T w, T h)
{
set_x(x() - w / 2);
set_width(width() + w);
set_y(y() - h / 2);
set_height(height() + h);
}
void inflate(const Size<T>& size)
{
set_x(x() - size.width() / 2);
set_width(width() + size.width());
set_y(y() - size.height() / 2);
set_height(height() + size.height());
}
void shrink(T w, T h)
{
set_x(x() + w / 2);
set_width(width() - w);
set_y(y() + h / 2);
set_height(height() - h);
}
void shrink(const Size<T>& size)
{
set_x(x() + size.width() / 2);
set_width(width() - size.width());
set_y(y() + size.height() / 2);
set_height(height() - size.height());
}
Rect<T> shrunken(T w, T h) const
{
Rect<T> rect = *this;
rect.shrink(w, h);
return rect;
}
Rect<T> shrunken(const Size<T>& size) const
{
Rect<T> rect = *this;
rect.shrink(size);
return rect;
}
Rect<T> inflated(T w, T h) const
{
Rect<T> rect = *this;
rect.inflate(w, h);
return rect;
}
Rect<T> inflated(const Size<T>& size) const
{
Rect<T> rect = *this;
rect.inflate(size);
return rect;
}
Rect<T> translated(T dx, T dy) const
{
Rect<T> rect = *this;
rect.move_by(dx, dy);
return rect;
}
Rect<T> translated(const Point<T>& delta) const
{
Rect<T> rect = *this;
rect.move_by(delta);
return rect;
}
bool contains_vertically(T y) const
{
return y >= top() && y <= bottom();
}
bool contains_horizontally(T x) const
{
return x >= left() && x <= right();
}
bool contains(T x, T y) const
{
return x >= m_location.x() && x <= right() && y >= m_location.y() && y <= bottom();
}
bool contains(const Point<T>& point) const
{
return contains(point.x(), point.y());
}
bool contains(const Rect<T>& other) const
{
return left() <= other.left()
&& right() >= other.right()
&& top() <= other.top()
&& bottom() >= other.bottom();
}
template<typename Container>
bool contains(const Container& others) const
{
bool have_any = false;
for (const auto& other : others) {
if (!contains(other))
return false;
have_any = true;
}
return have_any;
}
int primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); }
void set_primary_offset_for_orientation(Orientation orientation, int value) { m_location.set_primary_offset_for_orientation(orientation, value); }
int secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); }
void set_secondary_offset_for_orientation(Orientation orientation, int value) { m_location.set_secondary_offset_for_orientation(orientation, value); }
int primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); }
int secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); }
void set_primary_size_for_orientation(Orientation orientation, int value) { m_size.set_primary_size_for_orientation(orientation, value); }
void set_secondary_size_for_orientation(Orientation orientation, int value) { m_size.set_secondary_size_for_orientation(orientation, value); }
T first_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return top();
return left();
}
T last_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return bottom();
return right();
}
T left() const { return x(); }
T right() const { return x() + width() - 1; }
T top() const { return y(); }
T bottom() const { return y() + height() - 1; }
void set_left(T left)
{
set_x(left);
}
void set_top(T top)
{
set_y(top);
}
void set_right(T right)
{
set_width(right - x() + 1);
}
void set_bottom(T bottom)
{
set_height(bottom - y() + 1);
}
void set_right_without_resize(T new_right)
{
int delta = new_right - right();
move_by(delta, 0);
}
void set_bottom_without_resize(T new_bottom)
{
int delta = new_bottom - bottom();
move_by(0, delta);
}
bool intersects_vertically(const Rect<T>& other) const
{
return top() <= other.bottom() && other.top() <= bottom();
}
bool intersects_horizontally(const Rect<T>& other) const
{
return left() <= other.right() && other.left() <= right();
}
bool intersects(const Rect<T>& other) const
{
return left() <= other.right()
&& other.left() <= right()
&& top() <= other.bottom()
&& other.top() <= bottom();
}
template<typename Container>
bool intersects(const Container& others) const
{
for (const auto& other : others) {
if (intersects(other))
return true;
}
return false;
}
template<typename Container, typename Function>
IterationDecision for_each_intersected(const Container& others, Function f) const
{
if (is_empty())
return IterationDecision::Continue;
for (const auto& other : others) {
auto intersected_rect = intersected(other);
if (!intersected_rect.is_empty()) {
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
}
return IterationDecision::Continue;
}
T x() const { return location().x(); }
T y() const { return location().y(); }
T width() const { return m_size.width(); }
T height() const { return m_size.height(); }
void set_x(T x) { m_location.set_x(x); }
void set_y(T y) { m_location.set_y(y); }
void set_width(T width) { m_size.set_width(width); }
void set_height(T height) { m_size.set_height(height); }
const Point<T>& location() const { return m_location; }
const Size<T>& size() const { return m_size; }
Vector<Rect<T>, 4> shatter(const Rect<T>& hammer) const;
bool operator==(const Rect<T>& other) const
{
return m_location == other.m_location && m_size == other.m_size;
}
bool operator!=(const Rect<T>& other) const
{
return !(*this == other);
}
Rect<T> operator*(T factor) const { return { m_location * factor, m_size * factor }; }
Rect<T>& operator*=(T factor)
{
m_location *= factor;
m_size *= factor;
return *this;
}
void intersect(const Rect<T>&);
static Rect<T> from_two_points(const Point<T>& a, const Point<T>& b)
{
return { min(a.x(), b.x()), min(a.y(), b.y()), abst(a.x() - b.x()), abst(a.y() - b.y()) };
}
static Rect<T> intersection(const Rect<T>& a, const Rect<T>& b)
{
Rect<T> r = a;
r.intersect(b);
return r;
}
Rect<T> intersected(const Rect<T>& other) const
{
return intersection(*this, other);
}
Rect<T> united(const Rect<T>&) const;
Point<T> top_left() const { return { left(), top() }; }
Point<T> top_right() const { return { right(), top() }; }
Point<T> bottom_left() const { return { left(), bottom() }; }
Point<T> bottom_right() const { return { right(), bottom() }; }
void align_within(const Rect<T>&, TextAlignment);
void center_within(const Rect<T>& other)
{
center_horizontally_within(other);
center_vertically_within(other);
}
void center_horizontally_within(const Rect<T>& other)
{
set_x(other.center().x() - width() / 2);
}
void center_vertically_within(const Rect<T>& other)
{
set_y(other.center().y() - height() / 2);
}
template<typename U>
Rect<U> to() const
{
return Rect<U>(*this);
}
String to_string() const;
private:
Point<T> m_location;
Size<T> m_size;
};
template<typename T>
const LogStream& operator<<(const LogStream& stream, const Rect<T>& rect)
{
return stream << rect.to_string();
}
using IntRect = Rect<int>;
using FloatRect = Rect<float>;
ALWAYS_INLINE IntRect enclosing_int_rect(const FloatRect& float_rect)
{
return {
(int)float_rect.x(),
(int)float_rect.y(),
(int)ceilf(float_rect.width()),
(int)ceilf(float_rect.height()),
};
}
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Rect<T>> : Formatter<StringView> {
void format(FormatBuilder& builder, const Gfx::Rect<T>& value)
{
Formatter<StringView>::format(builder, value.to_string());
}
};
}
namespace IPC {
bool decode(Decoder&, Gfx::IntRect&);
bool encode(Encoder&, const Gfx::IntRect&);
}