ladybird/Tests/LibC/TestSearch.cpp
implicitfield 7a74805067 Tests: Avoid casting function types in LibC/TestSearch.cpp
Doing so causes a function type mismatch, which makes the test crash
when built with a new enough version of UBSan.
2024-04-18 13:14:33 -06:00

255 lines
7.4 KiB
C++

/*
* Copyright (c) 2021, Tim Schumacher <timschumi@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibTest/TestCase.h>
#include <bits/search.h>
#include <search.h>
#include <string.h>
#define NODE(node) static_cast<struct search_tree_node*>(node)
#define ROOTP(root) reinterpret_cast<void**>(root)
#define U8(value) static_cast<u8>(value)
static int comparison_function(void const* node1, void const* node2)
{
return strcmp(reinterpret_cast<char const*>(node1), reinterpret_cast<char const*>(node2));
}
struct twalk_test_entry {
void const* node;
VISIT order;
int depth;
};
#define TWALK_SET_DATA (-2)
#define TWALK_CHECK_END (-3)
#define TWALK_END_MARKER (-4)
TEST_CASE(tsearch)
{
struct search_tree_node* root = nullptr;
void* ret;
char const* key;
char* search;
// Try a nullptr rootp.
ret = tsearch("buggie", nullptr, comparison_function);
EXPECT_EQ(ret, nullptr);
// Try creating a new tree.
key = "5";
ret = tsearch(key, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root);
EXPECT_EQ(NODE(ret)->key, key);
// Insert an element on the left side.
key = "3";
ret = tsearch(key, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left);
EXPECT_EQ(NODE(ret)->key, key);
// Insert an element on the right side.
key = "7";
ret = tsearch(key, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right);
EXPECT_EQ(NODE(ret)->key, key);
// Add another layer for testing.
ret = tsearch("2", ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->left);
ret = tsearch("4", ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->right);
ret = tsearch("6", ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->left);
ret = tsearch("8", ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->right);
// Find the root element.
// strdup ensures that we are using the comparator.
search = strdup("5");
ret = tsearch(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root);
free(search);
// Find the lowest-level elements.
search = strdup("2");
ret = tsearch(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->left);
free(search);
search = strdup("4");
ret = tsearch(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->right);
free(search);
search = strdup("6");
ret = tsearch(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->left);
free(search);
search = strdup("8");
ret = tsearch(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->right);
free(search);
delete_node_recursive(root);
}
TEST_CASE(tfind)
{
struct search_tree_node* root = nullptr;
void* ret;
char* search;
// Try a nullptr rootp.
ret = tfind("buggie", nullptr, comparison_function);
EXPECT_EQ(ret, nullptr);
// Search for something that doesn't exist.
ret = tfind("buggie", ROOTP(&root), comparison_function);
EXPECT_EQ(ret, nullptr);
// Construct a tree for testing.
root = new_tree_node("5");
root->left = new_tree_node("3");
root->right = new_tree_node("7");
root->left->left = new_tree_node("2");
root->left->right = new_tree_node("4");
root->right->left = new_tree_node("6");
root->right->right = new_tree_node("8");
// Find the root element.
// strdup ensures that we are using the comparator.
search = strdup("5");
ret = tfind(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root);
free(search);
// Find the lowest-level elements.
search = strdup("2");
ret = tfind(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->left);
free(search);
search = strdup("4");
ret = tfind(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->left->right);
free(search);
search = strdup("6");
ret = tfind(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->left);
free(search);
search = strdup("8");
ret = tfind(search, ROOTP(&root), comparison_function);
EXPECT_EQ(ret, root->right->right);
free(search);
delete_node_recursive(root);
}
void twalk_action(void const* node, VISIT order, int depth);
void twalk_action(void const* node, VISIT order, int depth)
{
static int count = 0;
static const struct twalk_test_entry* tests = nullptr;
// Special case: Set test data.
if (depth == TWALK_SET_DATA) {
count = 0;
tests = static_cast<const struct twalk_test_entry*>(node);
return;
}
// Special case: End signaled by tester.
if (depth == TWALK_CHECK_END) {
if (tests[count].depth != TWALK_END_MARKER) {
FAIL(ByteString::formatted("Expected action (node={:#x}, order={}, depth={}), but twalk ended early.",
tests[count].node, U8(tests[count].order), tests[count].depth));
}
return;
}
// Special case: End marker reached.
if (tests[count].depth == TWALK_END_MARKER) {
FAIL(ByteString::formatted("Expected end, but twalk sent another action (node={:#x}, order={}, depth={}).",
node, U8(order), depth));
return;
}
EXPECT_EQ(node, tests[count].node);
EXPECT_EQ(U8(order), U8(tests[count].order));
EXPECT_EQ(depth, tests[count].depth);
count++;
}
TEST_CASE(twalk)
{
struct search_tree_node* root = nullptr;
// Try an empty tree.
struct twalk_test_entry tests1[] = {
{ nullptr, leaf, TWALK_END_MARKER },
};
twalk_action(tests1, leaf, TWALK_SET_DATA);
twalk(nullptr, twalk_action);
twalk_action(nullptr, leaf, TWALK_CHECK_END);
// Try a single node.
root = new_tree_node("5");
struct twalk_test_entry tests2[] = {
{ root, leaf, 0 },
{ nullptr, leaf, TWALK_END_MARKER },
};
twalk_action(tests2, leaf, TWALK_SET_DATA);
twalk(root, twalk_action);
twalk_action(nullptr, leaf, TWALK_CHECK_END);
// Try two layers of nodes.
root->left = new_tree_node("3");
root->right = new_tree_node("7");
struct twalk_test_entry tests3[] = {
{ root, preorder, 0 },
{ root->left, leaf, 1 },
{ root, postorder, 0 },
{ root->right, leaf, 1 },
{ root, endorder, 0 },
{ nullptr, leaf, TWALK_END_MARKER },
};
twalk_action(tests3, leaf, TWALK_SET_DATA);
twalk(root, twalk_action);
twalk_action(nullptr, leaf, TWALK_CHECK_END);
// Try three layers of nodes.
root->left->left = new_tree_node("2");
root->left->right = new_tree_node("4");
root->right->left = new_tree_node("6");
root->right->right = new_tree_node("8");
struct twalk_test_entry tests4[] = {
{ root, preorder, 0 },
{ root->left, preorder, 1 },
{ root->left->left, leaf, 2 },
{ root->left, postorder, 1 },
{ root->left->right, leaf, 2 },
{ root->left, endorder, 1 },
{ root, postorder, 0 },
{ root->right, preorder, 1 },
{ root->right->left, leaf, 2 },
{ root->right, postorder, 1 },
{ root->right->right, leaf, 2 },
{ root->right, endorder, 1 },
{ root, endorder, 0 },
{ nullptr, leaf, TWALK_END_MARKER },
};
twalk_action(tests4, leaf, TWALK_SET_DATA);
twalk(root, twalk_action);
twalk_action(nullptr, leaf, TWALK_CHECK_END);
delete_node_recursive(root);
}