mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 15:40:19 +00:00
d1b58ee9ad
No need to instantiate unique symbols for each Interpreter; they can be VM-global. This reduces the memory cost and startup time anyway.
321 lines
9.9 KiB
C++
321 lines
9.9 KiB
C++
/*
|
|
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/FlyString.h>
|
|
#include <AK/Function.h>
|
|
#include <LibJS/Interpreter.h>
|
|
#include <LibJS/Runtime/GlobalObject.h>
|
|
#include <LibJS/Runtime/MathObject.h>
|
|
#include <math.h>
|
|
|
|
namespace JS {
|
|
|
|
MathObject::MathObject(GlobalObject& global_object)
|
|
: Object(*global_object.object_prototype())
|
|
{
|
|
}
|
|
|
|
void MathObject::initialize(GlobalObject& global_object)
|
|
{
|
|
Object::initialize(global_object);
|
|
u8 attr = Attribute::Writable | Attribute::Configurable;
|
|
define_native_function("abs", abs, 1, attr);
|
|
define_native_function("random", random, 0, attr);
|
|
define_native_function("sqrt", sqrt, 1, attr);
|
|
define_native_function("floor", floor, 1, attr);
|
|
define_native_function("ceil", ceil, 1, attr);
|
|
define_native_function("round", round, 1, attr);
|
|
define_native_function("max", max, 2, attr);
|
|
define_native_function("min", min, 2, attr);
|
|
define_native_function("trunc", trunc, 1, attr);
|
|
define_native_function("sin", sin, 1, attr);
|
|
define_native_function("cos", cos, 1, attr);
|
|
define_native_function("tan", tan, 1, attr);
|
|
define_native_function("pow", pow, 2, attr);
|
|
define_native_function("exp", exp, 1, attr);
|
|
define_native_function("expm1", expm1, 1, attr);
|
|
define_native_function("sign", sign, 1, attr);
|
|
define_native_function("clz32", clz32, 1, attr);
|
|
define_native_function("acosh", acosh, 1, attr);
|
|
define_native_function("asinh", asinh, 1, attr);
|
|
define_native_function("atanh", atanh, 1, attr);
|
|
define_native_function("log1p", log1p, 1, attr);
|
|
define_native_function("cbrt", cbrt, 1, attr);
|
|
|
|
define_property("E", Value(M_E), 0);
|
|
define_property("LN2", Value(M_LN2), 0);
|
|
define_property("LN10", Value(M_LN10), 0);
|
|
define_property("LOG2E", Value(log2(M_E)), 0);
|
|
define_property("LOG10E", Value(log10(M_E)), 0);
|
|
define_property("PI", Value(M_PI), 0);
|
|
define_property("SQRT1_2", Value(M_SQRT1_2), 0);
|
|
define_property("SQRT2", Value(M_SQRT2), 0);
|
|
|
|
define_property(global_object.vm().well_known_symbol_to_string_tag(), js_string(global_object.heap(), "Math"), Attribute::Configurable);
|
|
}
|
|
|
|
MathObject::~MathObject()
|
|
{
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
|
|
}
|
|
|
|
Value MathObject::random(Interpreter&, GlobalObject&)
|
|
{
|
|
#ifdef __serenity__
|
|
double r = (double)arc4random() / (double)UINT32_MAX;
|
|
#else
|
|
double r = (double)rand() / (double)RAND_MAX;
|
|
#endif
|
|
return Value(r);
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sqrt(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::floor(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
auto number_double = number.as_double();
|
|
if (number_double < 0 && number_double > -1)
|
|
return Value(-0.f);
|
|
return Value(::ceil(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::round(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
|
|
{
|
|
if (!interpreter.argument_count())
|
|
return js_negative_infinity();
|
|
|
|
auto max = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
|
|
auto cur = interpreter.argument(i).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
max = Value(cur.as_double() > max.as_double() ? cur : max);
|
|
}
|
|
return max;
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
|
|
{
|
|
if (!interpreter.argument_count())
|
|
return js_infinity();
|
|
|
|
auto min = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
|
|
auto cur = interpreter.argument(i).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
min = Value(cur.as_double() < min.as_double() ? cur : min);
|
|
}
|
|
return min;
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if (number.as_double() < 0)
|
|
return MathObject::ceil(interpreter, global_object);
|
|
return MathObject::floor(interpreter, global_object);
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sin(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::cos(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::tan(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
|
|
{
|
|
return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::exp(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::expm1(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.is_positive_zero())
|
|
return Value(0);
|
|
if (number.is_negative_zero())
|
|
return Value(-0.0);
|
|
if (number.as_double() > 0)
|
|
return Value(1);
|
|
if (number.as_double() < 0)
|
|
return Value(-1);
|
|
return js_nan();
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
|
|
return Value(32);
|
|
return Value(__builtin_clz((unsigned)number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.as_double() < 1)
|
|
return JS::js_nan();
|
|
return Value(::acosh(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
return Value(::asinh(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.as_double() > 1 || number.as_double() < -1)
|
|
return JS::js_nan();
|
|
return Value(::atanh(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
if (number.as_double() < -1)
|
|
return JS::js_nan();
|
|
return Value(::log1p(number.as_double()));
|
|
}
|
|
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
|
|
{
|
|
auto number = interpreter.argument(0).to_number(interpreter);
|
|
if (interpreter.exception())
|
|
return {};
|
|
return Value(::cbrt(number.as_double()));
|
|
}
|
|
|
|
}
|