ladybird/Libraries/LibJS/Runtime/MathObject.cpp
Andreas Kling d1b58ee9ad LibJS: Move well-known symbols to the VM
No need to instantiate unique symbols for each Interpreter; they can
be VM-global. This reduces the memory cost and startup time anyway.
2020-09-22 20:10:20 +02:00

321 lines
9.9 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/FlyString.h>
#include <AK/Function.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/MathObject.h>
#include <math.h>
namespace JS {
MathObject::MathObject(GlobalObject& global_object)
: Object(*global_object.object_prototype())
{
}
void MathObject::initialize(GlobalObject& global_object)
{
Object::initialize(global_object);
u8 attr = Attribute::Writable | Attribute::Configurable;
define_native_function("abs", abs, 1, attr);
define_native_function("random", random, 0, attr);
define_native_function("sqrt", sqrt, 1, attr);
define_native_function("floor", floor, 1, attr);
define_native_function("ceil", ceil, 1, attr);
define_native_function("round", round, 1, attr);
define_native_function("max", max, 2, attr);
define_native_function("min", min, 2, attr);
define_native_function("trunc", trunc, 1, attr);
define_native_function("sin", sin, 1, attr);
define_native_function("cos", cos, 1, attr);
define_native_function("tan", tan, 1, attr);
define_native_function("pow", pow, 2, attr);
define_native_function("exp", exp, 1, attr);
define_native_function("expm1", expm1, 1, attr);
define_native_function("sign", sign, 1, attr);
define_native_function("clz32", clz32, 1, attr);
define_native_function("acosh", acosh, 1, attr);
define_native_function("asinh", asinh, 1, attr);
define_native_function("atanh", atanh, 1, attr);
define_native_function("log1p", log1p, 1, attr);
define_native_function("cbrt", cbrt, 1, attr);
define_property("E", Value(M_E), 0);
define_property("LN2", Value(M_LN2), 0);
define_property("LN10", Value(M_LN10), 0);
define_property("LOG2E", Value(log2(M_E)), 0);
define_property("LOG10E", Value(log10(M_E)), 0);
define_property("PI", Value(M_PI), 0);
define_property("SQRT1_2", Value(M_SQRT1_2), 0);
define_property("SQRT2", Value(M_SQRT2), 0);
define_property(global_object.vm().well_known_symbol_to_string_tag(), js_string(global_object.heap(), "Math"), Attribute::Configurable);
}
MathObject::~MathObject()
{
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
}
Value MathObject::random(Interpreter&, GlobalObject&)
{
#ifdef __serenity__
double r = (double)arc4random() / (double)UINT32_MAX;
#else
double r = (double)rand() / (double)RAND_MAX;
#endif
return Value(r);
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
auto number_double = number.as_double();
if (number_double < 0 && number_double > -1)
return Value(-0.f);
return Value(::ceil(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::round(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
if (!interpreter.argument_count())
return js_negative_infinity();
auto max = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
auto cur = interpreter.argument(i).to_number(interpreter);
if (interpreter.exception())
return {};
max = Value(cur.as_double() > max.as_double() ? cur : max);
}
return max;
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
if (!interpreter.argument_count())
return js_infinity();
auto min = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
auto cur = interpreter.argument(i).to_number(interpreter);
if (interpreter.exception())
return {};
min = Value(cur.as_double() < min.as_double() ? cur : min);
}
return min;
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(interpreter, global_object);
return MathObject::floor(interpreter, global_object);
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::sin(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::cos(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::tan(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::exp(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_nan())
return js_nan();
return Value(::expm1(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.is_positive_zero())
return Value(0);
if (number.is_negative_zero())
return Value(-0.0);
if (number.as_double() > 0)
return Value(1);
if (number.as_double() < 0)
return Value(-1);
return js_nan();
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
return Value(32);
return Value(__builtin_clz((unsigned)number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.as_double() < 1)
return JS::js_nan();
return Value(::acosh(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
return Value(::asinh(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.as_double() > 1 || number.as_double() < -1)
return JS::js_nan();
return Value(::atanh(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
if (number.as_double() < -1)
return JS::js_nan();
return Value(::log1p(number.as_double()));
}
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
return {};
return Value(::cbrt(number.as_double()));
}
}