mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 23:50:19 +00:00
0e08763483
Since we don't return normally from this function, let's make it a little extra difficult to accidentally leak something by leaving it on the stack in this function.
911 lines
37 KiB
C++
911 lines
37 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <AK/WeakPtr.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/FileSystem/Custody.h>
|
|
#include <Kernel/FileSystem/OpenFileDescription.h>
|
|
#include <Kernel/Memory/AllocationStrategy.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Memory/PageDirectory.h>
|
|
#include <Kernel/Memory/Region.h>
|
|
#include <Kernel/Memory/SharedInodeVMObject.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/PerformanceManager.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Random.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <LibC/limits.h>
|
|
#include <LibELF/AuxiliaryVector.h>
|
|
#include <LibELF/Image.h>
|
|
#include <LibELF/Validation.h>
|
|
|
|
namespace Kernel {
|
|
|
|
extern Memory::Region* g_signal_trampoline_region;
|
|
|
|
struct LoadResult {
|
|
OwnPtr<Memory::AddressSpace> space;
|
|
FlatPtr load_base { 0 };
|
|
FlatPtr entry_eip { 0 };
|
|
size_t size { 0 };
|
|
WeakPtr<Memory::Region> tls_region;
|
|
size_t tls_size { 0 };
|
|
size_t tls_alignment { 0 };
|
|
WeakPtr<Memory::Region> stack_region;
|
|
};
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);
|
|
|
|
static bool validate_stack_size(NonnullOwnPtrVector<KString> const& arguments, NonnullOwnPtrVector<KString>& environment)
|
|
{
|
|
size_t total_arguments_size = 0;
|
|
size_t total_environment_size = 0;
|
|
|
|
for (auto const& a : arguments)
|
|
total_arguments_size += a.length() + 1;
|
|
for (auto const& e : environment)
|
|
total_environment_size += e.length() + 1;
|
|
|
|
total_arguments_size += sizeof(char*) * (arguments.size() + 1);
|
|
total_environment_size += sizeof(char*) * (environment.size() + 1);
|
|
|
|
static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
|
|
static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
|
|
|
|
if (total_arguments_size > max_arguments_size)
|
|
return false;
|
|
|
|
if (total_environment_size > max_environment_size)
|
|
return false;
|
|
|
|
// FIXME: This doesn't account for the size of the auxiliary vector
|
|
return true;
|
|
}
|
|
|
|
static ErrorOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, NonnullOwnPtrVector<KString> const& arguments,
|
|
NonnullOwnPtrVector<KString> const& environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
|
|
{
|
|
FlatPtr new_sp = region.range().end().get();
|
|
|
|
// Add some bits of randomness to the user stack pointer.
|
|
new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
|
|
|
|
auto push_on_new_stack = [&new_sp](FlatPtr value) {
|
|
new_sp -= sizeof(FlatPtr);
|
|
Userspace<FlatPtr*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, &value);
|
|
VERIFY(!result.is_error());
|
|
};
|
|
|
|
auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
|
|
new_sp -= sizeof(auxv_t);
|
|
Userspace<auxv_t*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, &value);
|
|
VERIFY(!result.is_error());
|
|
};
|
|
|
|
auto push_string_on_new_stack = [&new_sp](StringView string) {
|
|
new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
|
|
Userspace<FlatPtr*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, string.characters_without_null_termination(), string.length() + 1);
|
|
VERIFY(!result.is_error());
|
|
};
|
|
|
|
Vector<FlatPtr> argv_entries;
|
|
for (auto const& argument : arguments) {
|
|
push_string_on_new_stack(argument.view());
|
|
TRY(argv_entries.try_append(new_sp));
|
|
}
|
|
|
|
Vector<FlatPtr> env_entries;
|
|
for (auto const& variable : environment) {
|
|
push_string_on_new_stack(variable.view());
|
|
TRY(env_entries.try_append(new_sp));
|
|
}
|
|
|
|
for (auto& value : auxiliary_values) {
|
|
if (!value.optional_string.is_empty()) {
|
|
push_string_on_new_stack(value.optional_string);
|
|
value.auxv.a_un.a_ptr = (void*)new_sp;
|
|
}
|
|
if (value.auxv.a_type == ELF::AuxiliaryValue::Random) {
|
|
u8 random_bytes[16] {};
|
|
get_fast_random_bytes({ random_bytes, sizeof(random_bytes) });
|
|
push_string_on_new_stack({ random_bytes, sizeof(random_bytes) });
|
|
value.auxv.a_un.a_ptr = (void*)new_sp;
|
|
}
|
|
}
|
|
|
|
for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
|
|
auto& value = auxiliary_values[i];
|
|
push_aux_value_on_new_stack(value.auxv);
|
|
}
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(env_entries[i]);
|
|
FlatPtr envp = new_sp;
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(argv_entries[i]);
|
|
FlatPtr argv = new_sp;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
new_sp -= new_sp % 16;
|
|
|
|
#if ARCH(I386)
|
|
// GCC assumes that the return address has been pushed to the stack when it enters the function,
|
|
// so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
|
|
// calculations work
|
|
new_sp -= sizeof(void*);
|
|
|
|
push_on_new_stack(envp);
|
|
push_on_new_stack(argv);
|
|
push_on_new_stack(argv_entries.size());
|
|
#else
|
|
regs.rdi = argv_entries.size();
|
|
regs.rsi = argv;
|
|
regs.rdx = envp;
|
|
#endif
|
|
|
|
VERIFY(new_sp % 16 == 0);
|
|
|
|
// FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
|
|
return new_sp;
|
|
}
|
|
|
|
struct RequiredLoadRange {
|
|
FlatPtr start { 0 };
|
|
FlatPtr end { 0 };
|
|
};
|
|
|
|
static ErrorOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& program_description)
|
|
{
|
|
auto& inode = *(program_description.inode());
|
|
auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
|
|
|
|
size_t executable_size = inode.size();
|
|
size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
|
|
auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF memory range calculation", Memory::Region::Access::Read));
|
|
auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
|
|
if (!elf_image.is_valid()) {
|
|
return EINVAL;
|
|
}
|
|
|
|
RequiredLoadRange range {};
|
|
elf_image.for_each_program_header([&range](const auto& pheader) {
|
|
if (pheader.type() != PT_LOAD)
|
|
return;
|
|
|
|
auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
|
|
auto region_end = region_start + pheader.size_in_memory();
|
|
if (range.start == 0 || region_start < range.start)
|
|
range.start = region_start;
|
|
if (range.end == 0 || region_end > range.end)
|
|
range.end = region_end;
|
|
});
|
|
|
|
VERIFY(range.end > range.start);
|
|
return range;
|
|
};
|
|
|
|
static ErrorOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, OpenFileDescription& main_program_description, OpenFileDescription* interpreter_description)
|
|
{
|
|
constexpr FlatPtr load_range_start = 0x08000000;
|
|
constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
|
|
constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
|
|
|
|
auto random_load_offset_in_range([](auto start, auto size) {
|
|
return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
|
|
});
|
|
|
|
if (main_program_header.e_type == ET_DYN) {
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
}
|
|
|
|
if (main_program_header.e_type != ET_EXEC)
|
|
return EINVAL;
|
|
|
|
auto main_program_load_range = TRY(get_required_load_range(main_program_description));
|
|
|
|
RequiredLoadRange selected_range {};
|
|
|
|
if (interpreter_description) {
|
|
auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));
|
|
|
|
auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
|
|
auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
|
|
|
|
// No intersection
|
|
if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
|
|
RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
|
|
RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
|
|
|
|
// Select larger part
|
|
if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
|
|
selected_range = first_available_part;
|
|
else
|
|
selected_range = second_available_part;
|
|
} else
|
|
selected_range = main_program_load_range;
|
|
|
|
// If main program is too big and leaves us without enough space for adequate loader randomization
|
|
if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
|
|
return E2BIG;
|
|
|
|
return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
|
|
}
|
|
|
|
enum class ShouldAllocateTls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
enum class ShouldAllowSyscalls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, OpenFileDescription& object_description,
|
|
FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
|
|
{
|
|
auto& inode = *(object_description.inode());
|
|
auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
|
|
|
|
if (vmobject->writable_mappings()) {
|
|
dbgln("Refusing to execute a write-mapped program");
|
|
return ETXTBSY;
|
|
}
|
|
|
|
size_t executable_size = inode.size();
|
|
size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
|
|
|
|
auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF loading", Memory::Region::Access::Read));
|
|
auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
|
|
|
|
if (!elf_image.is_valid())
|
|
return ENOEXEC;
|
|
|
|
Memory::Region* master_tls_region { nullptr };
|
|
size_t master_tls_size = 0;
|
|
size_t master_tls_alignment = 0;
|
|
FlatPtr load_base_address = 0;
|
|
|
|
auto elf_name = TRY(object_description.pseudo_path());
|
|
VERIFY(!Processor::in_critical());
|
|
|
|
Memory::MemoryManager::enter_address_space(*new_space);
|
|
|
|
auto load_tls_section = [&](auto& program_header) -> ErrorOr<void> {
|
|
VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
|
|
VERIFY(program_header.size_in_memory());
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto range = TRY(new_space->try_allocate_range({}, program_header.size_in_memory()));
|
|
auto region_name = TRY(KString::formatted("{} (master-tls)", elf_name));
|
|
master_tls_region = TRY(new_space->allocate_region(range, region_name->view(), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
|
|
master_tls_size = program_header.size_in_memory();
|
|
master_tls_alignment = program_header.alignment();
|
|
|
|
TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
|
|
return {};
|
|
};
|
|
|
|
auto load_writable_section = [&](auto& program_header) -> ErrorOr<void> {
|
|
// Writable section: create a copy in memory.
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
auto region_name = TRY(KString::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : ""));
|
|
|
|
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
|
|
size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
|
|
auto range_end = VirtualAddress { rounded_range_end };
|
|
|
|
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
|
|
auto region = TRY(new_space->allocate_region(range, region_name->view(), prot, AllocationStrategy::Reserve));
|
|
|
|
// It's not always the case with PIE executables (and very well shouldn't be) that the
|
|
// virtual address in the program header matches the one we end up giving the process.
|
|
// In order to copy the data image correctly into memory, we need to copy the data starting at
|
|
// the right initial page offset into the pages allocated for the elf_alloc-XX section.
|
|
// FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
|
|
// the .text and .data PT_LOAD sections of the executable.
|
|
// Accessing it would definitely be a bug.
|
|
auto page_offset = program_header.vaddr();
|
|
page_offset.mask(~PAGE_MASK);
|
|
TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
|
|
return {};
|
|
};
|
|
|
|
auto load_section = [&](auto& program_header) -> ErrorOr<void> {
|
|
if (program_header.size_in_memory() == 0)
|
|
return {};
|
|
|
|
if (program_header.is_writable())
|
|
return load_writable_section(program_header);
|
|
|
|
// Non-writable section: map the executable itself in memory.
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
if (program_header.is_executable())
|
|
prot |= PROT_EXEC;
|
|
|
|
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
|
|
size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
|
|
auto range_end = VirtualAddress { rounded_range_end };
|
|
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
|
|
auto region = TRY(new_space->allocate_region_with_vmobject(range, *vmobject, program_header.offset(), elf_name->view(), prot, true));
|
|
|
|
if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
|
|
region->set_syscall_region(true);
|
|
if (program_header.offset() == 0)
|
|
load_base_address = (FlatPtr)region->vaddr().as_ptr();
|
|
return {};
|
|
};
|
|
|
|
auto load_elf_program_header = [&](auto& program_header) -> ErrorOr<void> {
|
|
if (program_header.type() == PT_TLS)
|
|
return load_tls_section(program_header);
|
|
|
|
if (program_header.type() == PT_LOAD)
|
|
return load_section(program_header);
|
|
|
|
// NOTE: We ignore other program header types.
|
|
return {};
|
|
};
|
|
|
|
TRY([&] {
|
|
ErrorOr<void> result;
|
|
elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
|
|
result = load_elf_program_header(program_header);
|
|
return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
|
|
});
|
|
return result;
|
|
}());
|
|
|
|
if (!elf_image.entry().offset(load_offset).get()) {
|
|
dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto stack_range = TRY(new_space->try_allocate_range({}, Thread::default_userspace_stack_size));
|
|
auto* stack_region = TRY(new_space->allocate_region(stack_range, "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
|
|
stack_region->set_stack(true);
|
|
|
|
return LoadResult {
|
|
move(new_space),
|
|
load_base_address,
|
|
elf_image.entry().offset(load_offset).get(),
|
|
executable_size,
|
|
AK::try_make_weak_ptr(master_tls_region),
|
|
master_tls_size,
|
|
master_tls_alignment,
|
|
stack_region->make_weak_ptr()
|
|
};
|
|
}
|
|
|
|
ErrorOr<LoadResult>
|
|
Process::load(NonnullRefPtr<OpenFileDescription> main_program_description,
|
|
RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
|
|
{
|
|
auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));
|
|
|
|
ScopeGuard space_guard([&]() {
|
|
Memory::MemoryManager::enter_process_address_space(*this);
|
|
});
|
|
|
|
auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));
|
|
|
|
if (interpreter_description.is_null()) {
|
|
auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
|
|
m_master_tls_region = load_result.tls_region;
|
|
m_master_tls_size = load_result.tls_size;
|
|
m_master_tls_alignment = load_result.tls_alignment;
|
|
return load_result;
|
|
}
|
|
|
|
auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));
|
|
|
|
// TLS allocation will be done in userspace by the loader
|
|
VERIFY(!interpreter_load_result.tls_region);
|
|
VERIFY(!interpreter_load_result.tls_alignment);
|
|
VERIFY(!interpreter_load_result.tls_size);
|
|
|
|
return interpreter_load_result;
|
|
}
|
|
|
|
ErrorOr<void> Process::do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment,
|
|
RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
|
|
{
|
|
VERIFY(is_user_process());
|
|
VERIFY(!Processor::in_critical());
|
|
// Although we *could* handle a pseudo_path here, trying to execute something that doesn't have
|
|
// a custody (e.g. BlockDevice or RandomDevice) is pretty suspicious anyway.
|
|
auto path = TRY(main_program_description->original_absolute_path());
|
|
|
|
dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
|
|
|
|
// FIXME: How much stack space does process startup need?
|
|
if (!validate_stack_size(arguments, environment))
|
|
return E2BIG;
|
|
|
|
// FIXME: split_view() currently allocates (Vector) without checking for failure.
|
|
auto parts = path->view().split_view('/');
|
|
if (parts.is_empty())
|
|
return ENOENT;
|
|
|
|
auto new_process_name = TRY(KString::try_create(parts.last()));
|
|
auto new_main_thread_name = TRY(new_process_name->try_clone());
|
|
|
|
auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));
|
|
|
|
// NOTE: We don't need the interpreter executable description after this point.
|
|
// We destroy it here to prevent it from getting destroyed when we return from this function.
|
|
// That's important because when we're returning from this function, we're in a very delicate
|
|
// state where we can't block (e.g by trying to acquire a mutex in description teardown.)
|
|
bool has_interpreter = interpreter_description;
|
|
interpreter_description = nullptr;
|
|
|
|
auto signal_trampoline_range = TRY(load_result.space->try_allocate_range({}, PAGE_SIZE));
|
|
auto* signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(signal_trampoline_range, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true));
|
|
signal_trampoline_region->set_syscall_region(true);
|
|
|
|
// (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
|
|
Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
|
|
if (has_interpreter)
|
|
main_program_fd_allocation = TRY(m_fds.allocate());
|
|
|
|
// We commit to the new executable at this point. There is no turning back!
|
|
|
|
// Prevent other processes from attaching to us with ptrace while we're doing this.
|
|
MutexLocker ptrace_locker(ptrace_lock());
|
|
|
|
// Disable profiling temporarily in case it's running on this process.
|
|
auto was_profiling = m_profiling;
|
|
TemporaryChange profiling_disabler(m_profiling, false);
|
|
|
|
kill_threads_except_self();
|
|
|
|
bool executable_is_setid = false;
|
|
|
|
if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
|
|
auto main_program_metadata = main_program_description->metadata();
|
|
if (main_program_metadata.is_setuid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.euid = main_program_metadata.uid;
|
|
m_protected_values.suid = main_program_metadata.uid;
|
|
}
|
|
if (main_program_metadata.is_setgid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.egid = main_program_metadata.gid;
|
|
m_protected_values.sgid = main_program_metadata.gid;
|
|
}
|
|
}
|
|
|
|
set_dumpable(!executable_is_setid);
|
|
|
|
// We make sure to enter the new address space before destroying the old one.
|
|
// This ensures that the process always has a valid page directory.
|
|
Memory::MemoryManager::enter_address_space(*load_result.space);
|
|
|
|
m_space = load_result.space.release_nonnull();
|
|
|
|
m_executable = main_program_description->custody();
|
|
m_arguments = move(arguments);
|
|
m_environment = move(environment);
|
|
|
|
m_veil_state = VeilState::None;
|
|
m_unveiled_paths.clear();
|
|
m_unveiled_paths.set_metadata({ "/", UnveilAccess::None, false });
|
|
|
|
for (auto& property : m_coredump_properties)
|
|
property = {};
|
|
|
|
auto* current_thread = Thread::current();
|
|
current_thread->reset_signals_for_exec();
|
|
|
|
clear_futex_queues_on_exec();
|
|
|
|
fds().change_each([&](auto& file_description_metadata) {
|
|
if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
|
|
file_description_metadata = {};
|
|
});
|
|
|
|
if (main_program_fd_allocation.has_value()) {
|
|
main_program_description->set_readable(true);
|
|
m_fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC);
|
|
}
|
|
|
|
new_main_thread = nullptr;
|
|
if (¤t_thread->process() == this) {
|
|
new_main_thread = current_thread;
|
|
} else {
|
|
for_each_thread([&](auto& thread) {
|
|
new_main_thread = &thread;
|
|
return IterationDecision::Break;
|
|
});
|
|
}
|
|
VERIFY(new_main_thread);
|
|
|
|
auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path->view(), main_program_fd_allocation);
|
|
|
|
// NOTE: We create the new stack before disabling interrupts since it will zero-fault
|
|
// and we don't want to deal with faults after this point.
|
|
auto new_userspace_sp = TRY(make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), m_arguments, m_environment, move(auxv)));
|
|
|
|
if (wait_for_tracer_at_next_execve()) {
|
|
// Make sure we release the ptrace lock here or the tracer will block forever.
|
|
ptrace_locker.unlock();
|
|
Thread::current()->send_urgent_signal_to_self(SIGSTOP);
|
|
} else {
|
|
// Unlock regardless before disabling interrupts.
|
|
// Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
|
|
ptrace_locker.unlock();
|
|
}
|
|
|
|
// We enter a critical section here because we don't want to get interrupted between do_exec()
|
|
// and Processor::assume_context() or the next context switch.
|
|
// If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
|
|
Processor::enter_critical();
|
|
prev_flags = cpu_flags();
|
|
cli();
|
|
|
|
// NOTE: Be careful to not trigger any page faults below!
|
|
|
|
m_name = move(new_process_name);
|
|
new_main_thread->set_name(move(new_main_thread_name));
|
|
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.promises = m_protected_values.execpromises.load();
|
|
m_protected_values.has_promises = m_protected_values.has_execpromises.load();
|
|
|
|
m_protected_values.execpromises = 0;
|
|
m_protected_values.has_execpromises = false;
|
|
|
|
m_protected_values.signal_trampoline = signal_trampoline_region->vaddr();
|
|
|
|
// FIXME: PID/TID ISSUE
|
|
m_protected_values.pid = new_main_thread->tid().value();
|
|
}
|
|
|
|
auto tsr_result = new_main_thread->make_thread_specific_region({});
|
|
if (tsr_result.is_error()) {
|
|
// FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
new_main_thread->reset_fpu_state();
|
|
|
|
auto& regs = new_main_thread->m_regs;
|
|
#if ARCH(I386)
|
|
regs.cs = GDT_SELECTOR_CODE3 | 3;
|
|
regs.ds = GDT_SELECTOR_DATA3 | 3;
|
|
regs.es = GDT_SELECTOR_DATA3 | 3;
|
|
regs.ss = GDT_SELECTOR_DATA3 | 3;
|
|
regs.fs = GDT_SELECTOR_DATA3 | 3;
|
|
regs.gs = GDT_SELECTOR_TLS | 3;
|
|
regs.eip = load_result.entry_eip;
|
|
regs.esp = new_userspace_sp;
|
|
#else
|
|
regs.rip = load_result.entry_eip;
|
|
regs.rsp = new_userspace_sp;
|
|
#endif
|
|
regs.cr3 = address_space().page_directory().cr3();
|
|
|
|
{
|
|
TemporaryChange profiling_disabler(m_profiling, was_profiling);
|
|
PerformanceManager::add_process_exec_event(*this);
|
|
}
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
new_main_thread->set_state(Thread::State::Runnable);
|
|
}
|
|
u32 lock_count_to_restore;
|
|
[[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::in_critical());
|
|
return {};
|
|
}
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
|
|
{
|
|
Vector<ELF::AuxiliaryValue> auxv;
|
|
// PHDR/EXECFD
|
|
// PH*
|
|
auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
|
|
auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
|
|
// NOTELF
|
|
auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid.value() });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Platform, Processor::platform_string() });
|
|
// FIXME: This is platform specific
|
|
auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });
|
|
|
|
// FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
|
|
auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Random, nullptr });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
|
|
|
|
if (main_program_fd_allocation.has_value())
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Null, 0L });
|
|
return auxv;
|
|
}
|
|
|
|
static ErrorOr<NonnullOwnPtrVector<KString>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
|
|
{
|
|
int word_start = 2;
|
|
size_t word_length = 0;
|
|
if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
|
|
NonnullOwnPtrVector<KString> interpreter_words;
|
|
|
|
for (size_t i = 2; i < nread; ++i) {
|
|
if (first_page[i] == '\n') {
|
|
break;
|
|
}
|
|
|
|
if (first_page[i] != ' ') {
|
|
++word_length;
|
|
}
|
|
|
|
if (first_page[i] == ' ') {
|
|
if (word_length > 0) {
|
|
auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
|
|
interpreter_words.append(move(word));
|
|
}
|
|
word_length = 0;
|
|
word_start = i + 1;
|
|
}
|
|
}
|
|
|
|
if (word_length > 0) {
|
|
auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
|
|
interpreter_words.append(move(word));
|
|
}
|
|
|
|
if (!interpreter_words.is_empty())
|
|
return interpreter_words;
|
|
}
|
|
|
|
return ENOEXEC;
|
|
}
|
|
|
|
ErrorOr<RefPtr<OpenFileDescription>> Process::find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
|
|
{
|
|
// Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
|
|
StringBuilder interpreter_path_builder;
|
|
if (!TRY(ELF::validate_program_headers(main_executable_header, file_size, { &main_executable_header, main_executable_header_size }, &interpreter_path_builder))) {
|
|
dbgln("exec({}): File has invalid ELF Program headers", path);
|
|
return ENOEXEC;
|
|
}
|
|
auto interpreter_path = interpreter_path_builder.string_view();
|
|
|
|
if (!interpreter_path.is_empty()) {
|
|
dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
|
|
auto interpreter_description = TRY(VirtualFileSystem::the().open(interpreter_path, O_EXEC, 0, current_directory()));
|
|
auto interp_metadata = interpreter_description->metadata();
|
|
|
|
VERIFY(interpreter_description->inode());
|
|
|
|
// Validate the program interpreter as a valid elf binary.
|
|
// If your program interpreter is a #! file or something, it's time to stop playing games :)
|
|
if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
|
|
char first_page[PAGE_SIZE] = {};
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));
|
|
|
|
if (nread < sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
|
|
auto* elf_header = (ElfW(Ehdr)*)first_page;
|
|
if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
// Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
|
|
StringBuilder interpreter_interpreter_path_builder;
|
|
if (!TRY(ELF::validate_program_headers(*elf_header, interp_metadata.size, { first_page, nread }, &interpreter_interpreter_path_builder))) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_path);
|
|
return ENOEXEC;
|
|
}
|
|
auto interpreter_interpreter_path = interpreter_interpreter_path_builder.string_view();
|
|
|
|
if (!interpreter_interpreter_path.is_empty()) {
|
|
dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_path, interpreter_interpreter_path);
|
|
return ELOOP;
|
|
}
|
|
|
|
return interpreter_description;
|
|
}
|
|
|
|
if (main_executable_header.e_type == ET_REL) {
|
|
// We can't exec an ET_REL, that's just an object file from the compiler
|
|
return ENOEXEC;
|
|
}
|
|
if (main_executable_header.e_type == ET_DYN) {
|
|
// If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
|
|
// for its own relocation (i.e. it's /usr/lib/Loader.so)
|
|
if (path != "/usr/lib/Loader.so")
|
|
dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
|
|
return nullptr;
|
|
}
|
|
|
|
// No interpreter, but, path refers to a valid elf image
|
|
return nullptr;
|
|
}
|
|
|
|
ErrorOr<void> Process::exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, Thread*& new_main_thread, u32& prev_flags, int recursion_depth)
|
|
{
|
|
if (recursion_depth > 2) {
|
|
dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
|
|
return ELOOP;
|
|
}
|
|
|
|
// Open the file to check what kind of binary format it is
|
|
// Currently supported formats:
|
|
// - #! interpreted file
|
|
// - ELF32
|
|
// * ET_EXEC binary that just gets loaded
|
|
// * ET_DYN binary that requires a program interpreter
|
|
//
|
|
auto description = TRY(VirtualFileSystem::the().open(path->view(), O_EXEC, 0, current_directory()));
|
|
auto metadata = description->metadata();
|
|
|
|
if (!metadata.is_regular_file())
|
|
return EACCES;
|
|
|
|
// Always gonna need at least 3 bytes. these are for #!X
|
|
if (metadata.size < 3)
|
|
return ENOEXEC;
|
|
|
|
VERIFY(description->inode());
|
|
|
|
// Read the first page of the program into memory so we can validate the binfmt of it
|
|
char first_page[PAGE_SIZE];
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));
|
|
|
|
// 1) #! interpreted file
|
|
auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
|
|
if (!shebang_result.is_error()) {
|
|
auto shebang_words = shebang_result.release_value();
|
|
auto shebang_path = TRY(shebang_words.first().try_clone());
|
|
arguments.ptr_at(0) = move(path);
|
|
TRY(arguments.try_prepend(move(shebang_words)));
|
|
return exec(move(shebang_path), move(arguments), move(environment), new_main_thread, prev_flags, ++recursion_depth);
|
|
}
|
|
|
|
// #2) ELF32 for i386
|
|
|
|
if (nread < sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
auto const* main_program_header = (ElfW(Ehdr)*)first_page;
|
|
|
|
if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
|
|
dbgln("exec({}): File has invalid ELF header", path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto interpreter_description = TRY(find_elf_interpreter_for_executable(path->view(), *main_program_header, nread, metadata.size));
|
|
return do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header);
|
|
}
|
|
|
|
ErrorOr<FlatPtr> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
|
|
{
|
|
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
|
|
TRY(require_promise(Pledge::exec));
|
|
|
|
Thread* new_main_thread = nullptr;
|
|
u32 prev_flags = 0;
|
|
|
|
// NOTE: Be extremely careful with allocating any kernel memory in this function.
|
|
// On success, the kernel stack will be lost.
|
|
// The explicit block scope below is specifically placed to minimize the number
|
|
// of stack locals in this function.
|
|
{
|
|
auto params = TRY(copy_typed_from_user(user_params));
|
|
|
|
if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
|
|
return E2BIG;
|
|
|
|
auto path = TRY(get_syscall_path_argument(params.path));
|
|
|
|
auto copy_user_strings = [](const auto& list, auto& output) -> ErrorOr<void> {
|
|
if (!list.length)
|
|
return {};
|
|
Checked<size_t> size = sizeof(*list.strings);
|
|
size *= list.length;
|
|
if (size.has_overflow())
|
|
return EOVERFLOW;
|
|
Vector<Syscall::StringArgument, 32> strings;
|
|
TRY(strings.try_resize(list.length));
|
|
TRY(copy_from_user(strings.data(), list.strings, size.value()));
|
|
for (size_t i = 0; i < list.length; ++i) {
|
|
auto string = TRY(try_copy_kstring_from_user(strings[i]));
|
|
TRY(output.try_append(move(string)));
|
|
}
|
|
return {};
|
|
};
|
|
|
|
NonnullOwnPtrVector<KString> arguments;
|
|
TRY(copy_user_strings(params.arguments, arguments));
|
|
|
|
NonnullOwnPtrVector<KString> environment;
|
|
TRY(copy_user_strings(params.environment, environment));
|
|
|
|
TRY(exec(move(path), move(arguments), move(environment), new_main_thread, prev_flags));
|
|
}
|
|
|
|
// NOTE: If we're here, the exec has succeeded and we've got a new executable image!
|
|
// We will not return normally from this function. Instead, the next time we
|
|
// get scheduled, it'll be at the entry point of the new executable.
|
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::in_critical());
|
|
|
|
auto* current_thread = Thread::current();
|
|
if (current_thread == new_main_thread) {
|
|
// We need to enter the scheduler lock before changing the state
|
|
// and it will be released after the context switch into that
|
|
// thread. We should also still be in our critical section
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(Processor::in_critical() == 1);
|
|
g_scheduler_lock.lock();
|
|
current_thread->set_state(Thread::State::Running);
|
|
Processor::assume_context(*current_thread, prev_flags);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// NOTE: This code path is taken in the non-syscall case, i.e when the kernel spawns
|
|
// a userspace process directly (such as /bin/SystemServer on startup)
|
|
|
|
if (prev_flags & 0x200)
|
|
sti();
|
|
Processor::leave_critical();
|
|
return 0;
|
|
}
|
|
|
|
}
|