mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-27 01:50:24 +00:00
591 lines
18 KiB
C++
591 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Types.h>
|
|
#include <Kernel/Arch/PageDirectory.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Heap/Heap.h>
|
|
#include <Kernel/Heap/kmalloc.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Locking/Spinlock.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/PerformanceManager.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/StdLib.h>
|
|
|
|
#if ARCH(I386)
|
|
static constexpr size_t CHUNK_SIZE = 32;
|
|
#elif ARCH(X86_64) || ARCH(AARCH64)
|
|
static constexpr size_t CHUNK_SIZE = 64;
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
static_assert(is_power_of_two(CHUNK_SIZE));
|
|
|
|
static constexpr size_t INITIAL_KMALLOC_MEMORY_SIZE = 2 * MiB;
|
|
|
|
// Treat the heap as logically separate from .bss
|
|
__attribute__((section(".heap"))) static u8 initial_kmalloc_memory[INITIAL_KMALLOC_MEMORY_SIZE];
|
|
|
|
namespace std {
|
|
const nothrow_t nothrow;
|
|
}
|
|
|
|
static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()
|
|
|
|
struct KmallocSubheap {
|
|
KmallocSubheap(u8* base, size_t size)
|
|
: allocator(base, size)
|
|
{
|
|
}
|
|
|
|
IntrusiveListNode<KmallocSubheap> list_node;
|
|
using List = IntrusiveList<&KmallocSubheap::list_node>;
|
|
Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
|
|
};
|
|
|
|
class KmallocSlabBlock {
|
|
public:
|
|
static constexpr size_t block_size = 64 * KiB;
|
|
static constexpr FlatPtr block_mask = ~(block_size - 1);
|
|
|
|
KmallocSlabBlock(size_t slab_size)
|
|
: m_slab_size(slab_size)
|
|
, m_slab_count((block_size - sizeof(KmallocSlabBlock)) / slab_size)
|
|
{
|
|
for (size_t i = 0; i < m_slab_count; ++i) {
|
|
auto* freelist_entry = (FreelistEntry*)(void*)(&m_data[i * slab_size]);
|
|
freelist_entry->next = m_freelist;
|
|
m_freelist = freelist_entry;
|
|
}
|
|
}
|
|
|
|
void* allocate()
|
|
{
|
|
VERIFY(m_freelist);
|
|
++m_allocated_slabs;
|
|
return exchange(m_freelist, m_freelist->next);
|
|
}
|
|
|
|
void deallocate(void* ptr)
|
|
{
|
|
VERIFY(ptr >= &m_data && ptr < ((u8*)this + block_size));
|
|
--m_allocated_slabs;
|
|
auto* freelist_entry = (FreelistEntry*)ptr;
|
|
freelist_entry->next = m_freelist;
|
|
m_freelist = freelist_entry;
|
|
}
|
|
|
|
bool is_full() const
|
|
{
|
|
return m_freelist == nullptr;
|
|
}
|
|
|
|
size_t allocated_bytes() const
|
|
{
|
|
return m_allocated_slabs * m_slab_size;
|
|
}
|
|
|
|
size_t free_bytes() const
|
|
{
|
|
return (m_slab_count - m_allocated_slabs) * m_slab_size;
|
|
}
|
|
|
|
IntrusiveListNode<KmallocSlabBlock> list_node;
|
|
using List = IntrusiveList<&KmallocSlabBlock::list_node>;
|
|
|
|
private:
|
|
struct FreelistEntry {
|
|
FreelistEntry* next;
|
|
};
|
|
|
|
FreelistEntry* m_freelist { nullptr };
|
|
|
|
size_t m_slab_size { 0 };
|
|
size_t m_slab_count { 0 };
|
|
size_t m_allocated_slabs { 0 };
|
|
|
|
[[gnu::aligned(16)]] u8 m_data[];
|
|
};
|
|
|
|
class KmallocSlabheap {
|
|
public:
|
|
KmallocSlabheap(size_t slab_size)
|
|
: m_slab_size(slab_size)
|
|
{
|
|
}
|
|
|
|
size_t slab_size() const { return m_slab_size; }
|
|
|
|
void* allocate()
|
|
{
|
|
if (m_usable_blocks.is_empty()) {
|
|
// FIXME: This allocation wastes `block_size` bytes due to the implementation of kmalloc_aligned().
|
|
// Handle this with a custom VM+page allocator instead of using kmalloc_aligned().
|
|
auto* slot = kmalloc_aligned(KmallocSlabBlock::block_size, KmallocSlabBlock::block_size);
|
|
if (!slot) {
|
|
// FIXME: Dare to return nullptr!
|
|
PANIC("OOM while growing slabheap ({})", m_slab_size);
|
|
}
|
|
auto* block = new (slot) KmallocSlabBlock(m_slab_size);
|
|
m_usable_blocks.append(*block);
|
|
}
|
|
auto* block = m_usable_blocks.first();
|
|
auto* ptr = block->allocate();
|
|
if (block->is_full())
|
|
m_full_blocks.append(*block);
|
|
|
|
memset(ptr, KMALLOC_SCRUB_BYTE, m_slab_size);
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(void* ptr)
|
|
{
|
|
memset(ptr, KFREE_SCRUB_BYTE, m_slab_size);
|
|
|
|
auto* block = (KmallocSlabBlock*)((FlatPtr)ptr & KmallocSlabBlock::block_mask);
|
|
bool block_was_full = block->is_full();
|
|
block->deallocate(ptr);
|
|
if (block_was_full)
|
|
m_usable_blocks.append(*block);
|
|
}
|
|
|
|
size_t allocated_bytes() const
|
|
{
|
|
size_t total = m_full_blocks.size_slow() * KmallocSlabBlock::block_size;
|
|
for (auto const& slab_block : m_usable_blocks)
|
|
total += slab_block.allocated_bytes();
|
|
return total;
|
|
}
|
|
|
|
size_t free_bytes() const
|
|
{
|
|
size_t total = 0;
|
|
for (auto const& slab_block : m_usable_blocks)
|
|
total += slab_block.free_bytes();
|
|
return total;
|
|
}
|
|
|
|
bool try_purge()
|
|
{
|
|
bool did_purge = false;
|
|
|
|
// Note: We cannot remove children from the list when using a structured loop,
|
|
// Because we need to advance the iterator before we delete the underlying
|
|
// value, so we have to iterate manually
|
|
|
|
auto block = m_usable_blocks.begin();
|
|
while (block != m_usable_blocks.end()) {
|
|
if (block->allocated_bytes() != 0) {
|
|
++block;
|
|
continue;
|
|
}
|
|
auto& block_to_remove = *block;
|
|
++block;
|
|
block_to_remove.list_node.remove();
|
|
block_to_remove.~KmallocSlabBlock();
|
|
kfree_aligned(&block_to_remove);
|
|
|
|
did_purge = true;
|
|
}
|
|
return did_purge;
|
|
}
|
|
|
|
private:
|
|
size_t m_slab_size { 0 };
|
|
|
|
KmallocSlabBlock::List m_usable_blocks;
|
|
KmallocSlabBlock::List m_full_blocks;
|
|
};
|
|
|
|
struct KmallocGlobalData {
|
|
static constexpr size_t minimum_subheap_size = 1 * MiB;
|
|
|
|
KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
|
|
{
|
|
add_subheap(initial_heap, initial_heap_size);
|
|
}
|
|
|
|
void add_subheap(u8* storage, size_t storage_size)
|
|
{
|
|
dbgln_if(KMALLOC_DEBUG, "Adding kmalloc subheap @ {} with size {}", storage, storage_size);
|
|
static_assert(sizeof(KmallocSubheap) <= PAGE_SIZE);
|
|
auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
|
|
subheaps.append(*subheap);
|
|
}
|
|
|
|
void* allocate(size_t size)
|
|
{
|
|
VERIFY(!expansion_in_progress);
|
|
|
|
for (auto& slabheap : slabheaps) {
|
|
if (size <= slabheap.slab_size())
|
|
return slabheap.allocate();
|
|
}
|
|
|
|
for (auto& subheap : subheaps) {
|
|
if (auto* ptr = subheap.allocator.allocate(size))
|
|
return ptr;
|
|
}
|
|
|
|
// NOTE: This size calculation is a mirror of kmalloc_aligned(KmallocSlabBlock)
|
|
if (size <= KmallocSlabBlock::block_size * 2 + sizeof(ptrdiff_t) + sizeof(size_t)) {
|
|
// FIXME: We should propagate a freed pointer, to find the specific subheap it belonged to
|
|
// This would save us iterating over them in the next step and remove a recursion
|
|
bool did_purge = false;
|
|
for (auto& slabheap : slabheaps) {
|
|
if (slabheap.try_purge()) {
|
|
dbgln_if(KMALLOC_DEBUG, "Kmalloc purged block(s) from slabheap of size {} to avoid expansion", slabheap.slab_size());
|
|
did_purge = true;
|
|
break;
|
|
}
|
|
}
|
|
if (did_purge)
|
|
return allocate(size);
|
|
}
|
|
|
|
if (!try_expand(size)) {
|
|
PANIC("OOM when trying to expand kmalloc heap.");
|
|
}
|
|
|
|
return allocate(size);
|
|
}
|
|
|
|
void deallocate(void* ptr, size_t size)
|
|
{
|
|
VERIFY(!expansion_in_progress);
|
|
VERIFY(is_valid_kmalloc_address(VirtualAddress { ptr }));
|
|
|
|
for (auto& slabheap : slabheaps) {
|
|
if (size <= slabheap.slab_size())
|
|
return slabheap.deallocate(ptr);
|
|
}
|
|
|
|
for (auto& subheap : subheaps) {
|
|
if (subheap.allocator.contains(ptr)) {
|
|
subheap.allocator.deallocate(ptr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
PANIC("Bogus pointer passed to kfree_sized({:p}, {})", ptr, size);
|
|
}
|
|
|
|
size_t allocated_bytes() const
|
|
{
|
|
size_t total = 0;
|
|
for (auto const& subheap : subheaps)
|
|
total += subheap.allocator.allocated_bytes();
|
|
for (auto const& slabheap : slabheaps)
|
|
total += slabheap.allocated_bytes();
|
|
return total;
|
|
}
|
|
|
|
size_t free_bytes() const
|
|
{
|
|
size_t total = 0;
|
|
for (auto const& subheap : subheaps)
|
|
total += subheap.allocator.free_bytes();
|
|
for (auto const& slabheap : slabheaps)
|
|
total += slabheap.free_bytes();
|
|
return total;
|
|
}
|
|
|
|
bool try_expand(size_t allocation_request)
|
|
{
|
|
VERIFY(!expansion_in_progress);
|
|
TemporaryChange change(expansion_in_progress, true);
|
|
|
|
auto new_subheap_base = expansion_data->next_virtual_address;
|
|
Checked<size_t> padded_allocation_request = allocation_request;
|
|
padded_allocation_request *= 2;
|
|
padded_allocation_request += PAGE_SIZE;
|
|
if (padded_allocation_request.has_overflow()) {
|
|
PANIC("Integer overflow during kmalloc heap expansion");
|
|
}
|
|
auto rounded_allocation_request = Memory::page_round_up(padded_allocation_request.value());
|
|
if (rounded_allocation_request.is_error()) {
|
|
PANIC("Integer overflow computing pages for kmalloc heap expansion");
|
|
}
|
|
size_t new_subheap_size = max(minimum_subheap_size, rounded_allocation_request.value());
|
|
|
|
dbgln_if(KMALLOC_DEBUG, "Unable to allocate {}, expanding kmalloc heap", allocation_request);
|
|
|
|
if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
|
|
// FIXME: Dare to return false and allow kmalloc() to fail!
|
|
PANIC("Out of address space when expanding kmalloc heap.");
|
|
}
|
|
|
|
auto physical_pages_or_error = MM.commit_physical_pages(new_subheap_size / PAGE_SIZE);
|
|
if (physical_pages_or_error.is_error()) {
|
|
// FIXME: Dare to return false!
|
|
PANIC("Out of physical pages when expanding kmalloc heap.");
|
|
}
|
|
auto physical_pages = physical_pages_or_error.release_value();
|
|
|
|
expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);
|
|
|
|
auto cpu_supports_nx = Processor::current().has_nx();
|
|
|
|
SpinlockLocker mm_locker(Memory::s_mm_lock);
|
|
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
|
|
|
|
for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
|
|
// FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
|
|
auto& page = physical_pages.take_one().leak_ref();
|
|
auto* pte = MM.pte(MM.kernel_page_directory(), vaddr);
|
|
VERIFY(pte);
|
|
pte->set_physical_page_base(page.paddr().get());
|
|
pte->set_global(true);
|
|
pte->set_user_allowed(false);
|
|
pte->set_writable(true);
|
|
if (cpu_supports_nx)
|
|
pte->set_execute_disabled(true);
|
|
pte->set_present(true);
|
|
}
|
|
|
|
add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
|
|
return true;
|
|
}
|
|
|
|
void enable_expansion()
|
|
{
|
|
// FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
|
|
auto reserved_region = MUST(MM.allocate_unbacked_region_anywhere(64 * MiB, 1 * MiB));
|
|
|
|
expansion_data = KmallocGlobalData::ExpansionData {
|
|
.virtual_range = reserved_region->range(),
|
|
.next_virtual_address = reserved_region->range().base(),
|
|
};
|
|
|
|
// Make sure the entire kmalloc VM range is backed by page tables.
|
|
// This avoids having to deal with lazy page table allocation during heap expansion.
|
|
SpinlockLocker mm_locker(Memory::s_mm_lock);
|
|
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
|
|
for (auto vaddr = reserved_region->range().base(); vaddr < reserved_region->range().end(); vaddr = vaddr.offset(PAGE_SIZE)) {
|
|
MM.ensure_pte(MM.kernel_page_directory(), vaddr);
|
|
}
|
|
|
|
(void)reserved_region.leak_ptr();
|
|
}
|
|
|
|
struct ExpansionData {
|
|
Memory::VirtualRange virtual_range;
|
|
VirtualAddress next_virtual_address;
|
|
};
|
|
Optional<ExpansionData> expansion_data;
|
|
|
|
bool is_valid_kmalloc_address(VirtualAddress vaddr) const
|
|
{
|
|
if (vaddr.as_ptr() >= initial_kmalloc_memory && vaddr.as_ptr() < (initial_kmalloc_memory + INITIAL_KMALLOC_MEMORY_SIZE))
|
|
return true;
|
|
|
|
if (!expansion_data.has_value())
|
|
return false;
|
|
|
|
return expansion_data->virtual_range.contains(vaddr);
|
|
}
|
|
|
|
KmallocSubheap::List subheaps;
|
|
|
|
KmallocSlabheap slabheaps[6] = { 16, 32, 64, 128, 256, 512 };
|
|
|
|
bool expansion_in_progress { false };
|
|
};
|
|
|
|
READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
|
|
alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];
|
|
|
|
static size_t g_kmalloc_call_count;
|
|
static size_t g_kfree_call_count;
|
|
static size_t g_nested_kfree_calls;
|
|
bool g_dump_kmalloc_stacks;
|
|
|
|
void kmalloc_enable_expand()
|
|
{
|
|
g_kmalloc_global->enable_expansion();
|
|
}
|
|
|
|
static inline void kmalloc_verify_nospinlock_held()
|
|
{
|
|
// Catch bad callers allocating under spinlock.
|
|
if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
|
|
VERIFY(!Processor::in_critical());
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void kmalloc_init()
|
|
{
|
|
// Zero out heap since it's placed after end_of_kernel_bss.
|
|
memset(initial_kmalloc_memory, 0, sizeof(initial_kmalloc_memory));
|
|
g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(initial_kmalloc_memory, sizeof(initial_kmalloc_memory));
|
|
|
|
s_lock.initialize();
|
|
}
|
|
|
|
void* kmalloc(size_t size)
|
|
{
|
|
kmalloc_verify_nospinlock_held();
|
|
SpinlockLocker lock(s_lock);
|
|
++g_kmalloc_call_count;
|
|
|
|
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
|
|
dbgln("kmalloc({})", size);
|
|
Kernel::dump_backtrace();
|
|
}
|
|
|
|
void* ptr = g_kmalloc_global->allocate(size);
|
|
|
|
Thread* current_thread = Thread::current();
|
|
if (!current_thread)
|
|
current_thread = Processor::idle_thread();
|
|
if (current_thread) {
|
|
// FIXME: By the time we check this, we have already allocated above.
|
|
// This means that in the case of an infinite recursion, we can't catch it this way.
|
|
VERIFY(current_thread->is_allocation_enabled());
|
|
PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void* kcalloc(size_t count, size_t size)
|
|
{
|
|
if (Checked<size_t>::multiplication_would_overflow(count, size))
|
|
return nullptr;
|
|
size_t new_size = count * size;
|
|
auto* ptr = kmalloc(new_size);
|
|
// FIXME: Avoid redundantly scrubbing the memory in kmalloc()
|
|
if (ptr)
|
|
memset(ptr, 0, new_size);
|
|
return ptr;
|
|
}
|
|
|
|
void kfree_sized(void* ptr, size_t size)
|
|
{
|
|
if (!ptr)
|
|
return;
|
|
|
|
VERIFY(size > 0);
|
|
|
|
kmalloc_verify_nospinlock_held();
|
|
SpinlockLocker lock(s_lock);
|
|
++g_kfree_call_count;
|
|
++g_nested_kfree_calls;
|
|
|
|
if (g_nested_kfree_calls == 1) {
|
|
Thread* current_thread = Thread::current();
|
|
if (!current_thread)
|
|
current_thread = Processor::idle_thread();
|
|
if (current_thread) {
|
|
VERIFY(current_thread->is_allocation_enabled());
|
|
PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
|
|
}
|
|
}
|
|
|
|
g_kmalloc_global->deallocate(ptr, size);
|
|
--g_nested_kfree_calls;
|
|
}
|
|
|
|
size_t kmalloc_good_size(size_t size)
|
|
{
|
|
VERIFY(size > 0);
|
|
// NOTE: There's no need to take the kmalloc lock, as the kmalloc slab-heaps (and their sizes) are constant
|
|
for (auto const& slabheap : g_kmalloc_global->slabheaps) {
|
|
if (size <= slabheap.slab_size())
|
|
return slabheap.slab_size();
|
|
}
|
|
return round_up_to_power_of_two(size + Heap<CHUNK_SIZE>::AllocationHeaderSize, CHUNK_SIZE) - Heap<CHUNK_SIZE>::AllocationHeaderSize;
|
|
}
|
|
|
|
void* kmalloc_aligned(size_t size, size_t alignment)
|
|
{
|
|
Checked<size_t> real_allocation_size = size;
|
|
real_allocation_size += alignment;
|
|
real_allocation_size += sizeof(ptrdiff_t) + sizeof(size_t);
|
|
void* ptr = kmalloc(real_allocation_size.value());
|
|
if (ptr == nullptr)
|
|
return nullptr;
|
|
size_t max_addr = (size_t)ptr + alignment;
|
|
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
|
|
((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
|
|
((size_t*)aligned_ptr)[-2] = real_allocation_size.value();
|
|
return aligned_ptr;
|
|
}
|
|
|
|
void* operator new(size_t size)
|
|
{
|
|
void* ptr = kmalloc(size);
|
|
VERIFY(ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void* operator new(size_t size, std::nothrow_t const&) noexcept
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void* operator new(size_t size, std::align_val_t al)
|
|
{
|
|
void* ptr = kmalloc_aligned(size, (size_t)al);
|
|
VERIFY(ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void* operator new(size_t size, std::align_val_t al, std::nothrow_t const&) noexcept
|
|
{
|
|
return kmalloc_aligned(size, (size_t)al);
|
|
}
|
|
|
|
void* operator new[](size_t size)
|
|
{
|
|
void* ptr = kmalloc(size);
|
|
VERIFY(ptr);
|
|
return ptr;
|
|
}
|
|
|
|
void* operator new[](size_t size, std::nothrow_t const&) noexcept
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void operator delete(void*) noexcept
|
|
{
|
|
// All deletes in kernel code should have a known size.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void operator delete(void* ptr, size_t size) noexcept
|
|
{
|
|
return kfree_sized(ptr, size);
|
|
}
|
|
|
|
void operator delete(void* ptr, size_t, std::align_val_t) noexcept
|
|
{
|
|
return kfree_aligned(ptr);
|
|
}
|
|
|
|
void operator delete[](void*) noexcept
|
|
{
|
|
// All deletes in kernel code should have a known size.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void operator delete[](void* ptr, size_t size) noexcept
|
|
{
|
|
return kfree_sized(ptr, size);
|
|
}
|
|
|
|
void get_kmalloc_stats(kmalloc_stats& stats)
|
|
{
|
|
SpinlockLocker lock(s_lock);
|
|
stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
|
|
stats.bytes_free = g_kmalloc_global->free_bytes();
|
|
stats.kmalloc_call_count = g_kmalloc_call_count;
|
|
stats.kfree_call_count = g_kfree_call_count;
|
|
}
|