ladybird/Userland/Libraries/LibC/time.cpp
Ben Wiederhake 6b7ce19161 Everywhere: Remove unused includes of LibC/stdlib.h
These instances were detected by searching for files that include
stdlib.h, but don't match the regex:

\\b(_abort|abort|abs|aligned_alloc|arc4random|arc4random_buf|arc4random_
uniform|atexit|atof|atoi|atol|atoll|bsearch|calloc|clearenv|div|div_t|ex
it|_Exit|EXIT_FAILURE|EXIT_SUCCESS|free|getenv|getprogname|grantpt|labs|
ldiv|ldiv_t|llabs|lldiv|lldiv_t|malloc|malloc_good_size|malloc_size|mble
n|mbstowcs|mbtowc|mkdtemp|mkstemp|mkstemps|mktemp|posix_memalign|posix_o
penpt|ptsname|ptsname_r|putenv|qsort|qsort_r|rand|RAND_MAX|random|reallo
c|realpath|secure_getenv|serenity_dump_malloc_stats|serenity_setenv|sete
nv|setprogname|srand|srandom|strtod|strtof|strtol|strtold|strtoll|strtou
l|strtoull|system|unlockpt|unsetenv|wcstombs|wctomb)\\b

(Without the linebreaks.)

This regex is pessimistic, so there might be more files that don't
actually use anything from the stdlib.

In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
2023-01-02 20:27:20 -05:00

503 lines
15 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/DateConstants.h>
#include <AK/DeprecatedString.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <Kernel/API/TimePage.h>
#include <LibTimeZone/TimeZone.h>
#include <assert.h>
#include <bits/pthread_cancel.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <sys/times.h>
#include <syscall.h>
#include <time.h>
#include <utime.h>
extern "C" {
static constexpr char const* __utc = "UTC";
static StringView __tzname { __utc, __builtin_strlen(__utc) };
static char __tzname_standard[TZNAME_MAX];
static char __tzname_daylight[TZNAME_MAX];
long timezone = 0;
long altzone = 0;
char* tzname[2] = { const_cast<char*>(__utc), const_cast<char*>(__utc) };
int daylight = 0;
time_t time(time_t* tloc)
{
struct timeval tv;
struct timezone tz;
if (gettimeofday(&tv, &tz) < 0)
return (time_t)-1;
if (tloc)
*tloc = tv.tv_sec;
return tv.tv_sec;
}
int adjtime(const struct timeval* delta, struct timeval* old_delta)
{
int rc = syscall(SC_adjtime, delta, old_delta);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int gettimeofday(struct timeval* __restrict__ tv, void* __restrict__)
{
if (!tv) {
errno = EFAULT;
return -1;
}
struct timespec ts = {};
if (clock_gettime(CLOCK_REALTIME_COARSE, &ts) < 0)
return -1;
TIMESPEC_TO_TIMEVAL(tv, &ts);
return 0;
}
int settimeofday(struct timeval* __restrict__ tv, void* __restrict__)
{
if (!tv) {
errno = EFAULT;
return -1;
}
timespec ts;
TIMEVAL_TO_TIMESPEC(tv, &ts);
return clock_settime(CLOCK_REALTIME, &ts);
}
int utimes(char const* pathname, const struct timeval times[2])
{
if (!times) {
return utime(pathname, nullptr);
}
// FIXME: implement support for tv_usec in the utime (or a new) syscall
utimbuf buf = { times[0].tv_sec, times[1].tv_sec };
return utime(pathname, &buf);
}
char* ctime(time_t const* t)
{
return asctime(localtime(t));
}
char* ctime_r(time_t const* t, char* buf)
{
struct tm tm_buf;
return asctime_r(localtime_r(t, &tm_buf), buf);
}
static int const __seconds_per_day = 60 * 60 * 24;
static bool is_valid_time(time_t timestamp)
{
// Note: these correspond to the number of seconds from epoch to the dates "Jan 1 00:00:00 -2147483648" and "Dec 31 23:59:59 2147483647",
// respectively, which are the smallest and biggest representable dates without overflowing tm->tm_year, if it is an int.
constexpr time_t smallest_possible_time = -67768040609740800;
constexpr time_t biggest_possible_time = 67768036191676799;
return (timestamp >= smallest_possible_time) && (timestamp <= biggest_possible_time);
}
static struct tm* time_to_tm(struct tm* tm, time_t t, StringView time_zone)
{
if (!is_valid_time(t)) {
errno = EOVERFLOW;
return nullptr;
}
if (auto offset = TimeZone::get_time_zone_offset(time_zone, AK::Time::from_seconds(t)); offset.has_value()) {
tm->tm_isdst = offset->in_dst == TimeZone::InDST::Yes;
t += offset->seconds;
}
int year = 1970;
for (; t >= days_in_year(year) * __seconds_per_day; ++year)
t -= days_in_year(year) * __seconds_per_day;
for (; t < 0; --year)
t += days_in_year(year - 1) * __seconds_per_day;
tm->tm_year = year - 1900;
VERIFY(t >= 0);
int days = t / __seconds_per_day;
tm->tm_yday = days;
int remaining = t % __seconds_per_day;
tm->tm_sec = remaining % 60;
remaining /= 60;
tm->tm_min = remaining % 60;
tm->tm_hour = remaining / 60;
int month;
for (month = 1; month < 12 && days >= days_in_month(year, month); ++month)
days -= days_in_month(year, month);
tm->tm_mday = days + 1;
tm->tm_wday = day_of_week(year, month, tm->tm_mday);
tm->tm_mon = month - 1;
return tm;
}
static time_t tm_to_time(struct tm* tm, StringView time_zone)
{
// "The original values of the tm_wday and tm_yday components of the structure are ignored,
// and the original values of the other components are not restricted to the ranges described in <time.h>.
// [...]
// Upon successful completion, the values of the tm_wday and tm_yday components of the structure shall be set appropriately,
// and the other components are set to represent the specified time since the Epoch,
// but with their values forced to the ranges indicated in the <time.h> entry;
// the final value of tm_mday shall not be set until tm_mon and tm_year are determined."
tm->tm_year += tm->tm_mon / 12;
tm->tm_mon %= 12;
if (tm->tm_mon < 0) {
tm->tm_year--;
tm->tm_mon += 12;
}
tm->tm_yday = day_of_year(1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday);
time_t days_since_epoch = years_to_days_since_epoch(1900 + tm->tm_year) + tm->tm_yday;
auto timestamp = ((days_since_epoch * 24 + tm->tm_hour) * 60 + tm->tm_min) * 60 + tm->tm_sec;
if (tm->tm_isdst < 0) {
if (auto offset = TimeZone::get_time_zone_offset(time_zone, AK::Time::from_seconds(timestamp)); offset.has_value())
timestamp -= offset->seconds;
} else {
auto index = tm->tm_isdst == 0 ? 0 : 1;
if (auto offsets = TimeZone::get_named_time_zone_offsets(time_zone, AK::Time::from_seconds(timestamp)); offsets.has_value())
timestamp -= offsets->at(index).seconds;
}
if (!is_valid_time(timestamp)) {
errno = EOVERFLOW;
return -1;
}
return timestamp;
}
time_t mktime(struct tm* tm)
{
tzset();
return tm_to_time(tm, __tzname);
}
struct tm* localtime(time_t const* t)
{
tzset();
static struct tm tm_buf;
return localtime_r(t, &tm_buf);
}
struct tm* localtime_r(time_t const* t, struct tm* tm)
{
if (!t)
return nullptr;
return time_to_tm(tm, *t, __tzname);
}
time_t timegm(struct tm* tm)
{
tm->tm_isdst = 0;
return tm_to_time(tm, { __utc, __builtin_strlen(__utc) });
}
struct tm* gmtime(time_t const* t)
{
static struct tm tm_buf;
return gmtime_r(t, &tm_buf);
}
struct tm* gmtime_r(time_t const* t, struct tm* tm)
{
if (!t)
return nullptr;
return time_to_tm(tm, *t, { __utc, __builtin_strlen(__utc) });
}
char* asctime(const struct tm* tm)
{
static char buffer[69];
return asctime_r(tm, buffer);
}
char* asctime_r(const struct tm* tm, char* buffer)
{
// Spec states buffer must be at least 26 bytes.
constexpr size_t assumed_len = 26;
size_t filled_size = strftime(buffer, assumed_len, "%a %b %e %T %Y\n", tm);
// If the buffer was not large enough, set EOVERFLOW and return null.
if (filled_size == 0) {
errno = EOVERFLOW;
return nullptr;
}
return buffer;
}
// FIXME: Some formats are not supported.
size_t strftime(char* destination, size_t max_size, char const* format, const struct tm* tm)
{
tzset();
StringBuilder builder { max_size };
int const format_len = strlen(format);
for (int i = 0; i < format_len; ++i) {
if (format[i] != '%') {
builder.append(format[i]);
} else {
if (++i >= format_len)
return 0;
switch (format[i]) {
case 'a':
builder.append(short_day_names[tm->tm_wday]);
break;
case 'A':
builder.append(long_day_names[tm->tm_wday]);
break;
case 'b':
builder.append(short_month_names[tm->tm_mon]);
break;
case 'B':
builder.append(long_month_names[tm->tm_mon]);
break;
case 'C':
builder.appendff("{:02}", (tm->tm_year + 1900) / 100);
break;
case 'd':
builder.appendff("{:02}", tm->tm_mday);
break;
case 'D':
builder.appendff("{:02}/{:02}/{:02}", tm->tm_mon + 1, tm->tm_mday, (tm->tm_year + 1900) % 100);
break;
case 'e':
builder.appendff("{:2}", tm->tm_mday);
break;
case 'h':
builder.append(short_month_names[tm->tm_mon]);
break;
case 'H':
builder.appendff("{:02}", tm->tm_hour);
break;
case 'I': {
int display_hour = tm->tm_hour % 12;
if (display_hour == 0)
display_hour = 12;
builder.appendff("{:02}", display_hour);
break;
}
case 'j':
builder.appendff("{:03}", tm->tm_yday + 1);
break;
case 'm':
builder.appendff("{:02}", tm->tm_mon + 1);
break;
case 'M':
builder.appendff("{:02}", tm->tm_min);
break;
case 'n':
builder.append('\n');
break;
case 'p':
builder.append(tm->tm_hour < 12 ? "AM"sv : "PM"sv);
break;
case 'r': {
int display_hour = tm->tm_hour % 12;
if (display_hour == 0)
display_hour = 12;
builder.appendff("{:02}:{:02}:{:02} {}", display_hour, tm->tm_min, tm->tm_sec, tm->tm_hour < 12 ? "AM" : "PM");
break;
}
case 'R':
builder.appendff("{:02}:{:02}", tm->tm_hour, tm->tm_min);
break;
case 'S':
builder.appendff("{:02}", tm->tm_sec);
break;
case 't':
builder.append('\t');
break;
case 'T':
builder.appendff("{:02}:{:02}:{:02}", tm->tm_hour, tm->tm_min, tm->tm_sec);
break;
case 'u':
builder.appendff("{}", tm->tm_wday ? tm->tm_wday : 7);
break;
case 'U': {
int const wday_of_year_beginning = (tm->tm_wday + 6 * tm->tm_yday) % 7;
int const week_number = (tm->tm_yday + wday_of_year_beginning) / 7;
builder.appendff("{:02}", week_number);
break;
}
case 'V': {
int const wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7;
int week_number = (tm->tm_yday + wday_of_year_beginning) / 7 + 1;
if (wday_of_year_beginning > 3) {
if (tm->tm_yday >= 7 - wday_of_year_beginning)
--week_number;
else {
int const days_of_last_year = days_in_year(tm->tm_year + 1900 - 1);
int const wday_of_last_year_beginning = (wday_of_year_beginning + 6 * days_of_last_year) % 7;
week_number = (days_of_last_year + wday_of_last_year_beginning) / 7 + 1;
if (wday_of_last_year_beginning > 3)
--week_number;
}
}
builder.appendff("{:02}", week_number);
break;
}
case 'w':
builder.appendff("{}", tm->tm_wday);
break;
case 'W': {
int const wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7;
int const week_number = (tm->tm_yday + wday_of_year_beginning) / 7;
builder.appendff("{:02}", week_number);
break;
}
case 'y':
builder.appendff("{:02}", (tm->tm_year + 1900) % 100);
break;
case 'Y':
builder.appendff("{}", tm->tm_year + 1900);
break;
case '%':
builder.append('%');
break;
default:
return 0;
}
}
if (builder.length() + 1 > max_size)
return 0;
}
auto str = builder.build();
bool fits = str.copy_characters_to_buffer(destination, max_size);
return fits ? str.length() : 0;
}
void tzset()
{
__tzname = TimeZone::current_time_zone();
auto set_default_values = []() {
timezone = 0;
altzone = 0;
daylight = 0;
__tzname = StringView { __utc, __builtin_strlen(__utc) };
tzname[0] = const_cast<char*>(__utc);
tzname[1] = const_cast<char*>(__utc);
};
if (auto offsets = TimeZone::get_named_time_zone_offsets(__tzname, AK::Time::now_realtime()); offsets.has_value()) {
if (!offsets->at(0).name.copy_characters_to_buffer(__tzname_standard, TZNAME_MAX))
return set_default_values();
if (!offsets->at(1).name.copy_characters_to_buffer(__tzname_daylight, TZNAME_MAX))
return set_default_values();
// timezone and altzone are seconds west of UTC, i.e. the offsets are negated.
timezone = -offsets->at(0).seconds;
altzone = -offsets->at(1).seconds;
daylight = timezone != altzone;
tzname[0] = __tzname_standard;
tzname[1] = __tzname_daylight;
} else {
set_default_values();
}
}
clock_t clock()
{
struct tms tms;
times(&tms);
return tms.tms_utime + tms.tms_stime;
}
static Kernel::TimePage* get_kernel_time_page()
{
static Kernel::TimePage* s_kernel_time_page;
// FIXME: Thread safety
if (!s_kernel_time_page) {
auto rc = syscall(SC_map_time_page);
if ((int)rc < 0 && (int)rc > -EMAXERRNO) {
errno = -(int)rc;
return nullptr;
}
s_kernel_time_page = (Kernel::TimePage*)rc;
}
return s_kernel_time_page;
}
int clock_gettime(clockid_t clock_id, struct timespec* ts)
{
if (Kernel::time_page_supports(clock_id)) {
if (!ts) {
errno = EFAULT;
return -1;
}
if (auto* kernel_time_page = get_kernel_time_page()) {
u32 update_iteration;
do {
update_iteration = AK::atomic_load(&kernel_time_page->update1, AK::memory_order_acquire);
*ts = kernel_time_page->clocks[clock_id];
} while (update_iteration != AK::atomic_load(&kernel_time_page->update2, AK::memory_order_acquire));
return 0;
}
}
int rc = syscall(SC_clock_gettime, clock_id, ts);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int clock_settime(clockid_t clock_id, struct timespec* ts)
{
int rc = syscall(SC_clock_settime, clock_id, ts);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec* requested_sleep, struct timespec* remaining_sleep)
{
__pthread_maybe_cancel();
Syscall::SC_clock_nanosleep_params params { clock_id, flags, requested_sleep, remaining_sleep };
int rc = syscall(SC_clock_nanosleep, &params);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
int nanosleep(const struct timespec* requested_sleep, struct timespec* remaining_sleep)
{
return clock_nanosleep(CLOCK_REALTIME, 0, requested_sleep, remaining_sleep);
}
int clock_getres(clockid_t clock_id, struct timespec* result)
{
Syscall::SC_clock_getres_params params { clock_id, result };
int rc = syscall(SC_clock_getres, &params);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
double difftime(time_t t1, time_t t0)
{
return (double)(t1 - t0);
}
}