mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-29 02:50:26 +00:00
10f5a046c4
This is written, but never read again, and is thus useless.
322 lines
9.8 KiB
C++
322 lines
9.8 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Array.h>
|
|
#include <AK/Checked.h>
|
|
#include <AK/Time.h>
|
|
|
|
// Make a reasonable guess as to which timespec/timeval definition to use.
|
|
// It doesn't really matter, since both are identical.
|
|
#ifdef KERNEL
|
|
# include <Kernel/UnixTypes.h>
|
|
#else
|
|
# include <sys/time.h>
|
|
# include <time.h>
|
|
#endif
|
|
|
|
namespace AK {
|
|
|
|
int day_of_year(int year, unsigned month, int day)
|
|
{
|
|
VERIFY(month >= 1 && month <= 12);
|
|
|
|
constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
|
|
int day_of_year = seek_table[month - 1] + day - 1;
|
|
|
|
if (is_leap_year(year) && month >= 3)
|
|
day_of_year++;
|
|
|
|
return day_of_year;
|
|
}
|
|
|
|
int days_in_month(int year, unsigned month)
|
|
{
|
|
VERIFY(month >= 1 && month <= 12);
|
|
if (month == 2)
|
|
return is_leap_year(year) ? 29 : 28;
|
|
|
|
bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12);
|
|
return is_long_month ? 31 : 30;
|
|
}
|
|
|
|
unsigned day_of_week(int year, unsigned month, int day)
|
|
{
|
|
VERIFY(month >= 1 && month <= 12);
|
|
constexpr Array seek_table = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
|
|
if (month < 3)
|
|
--year;
|
|
|
|
return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7;
|
|
}
|
|
|
|
Time Time::from_timespec(const struct timespec& ts)
|
|
{
|
|
i32 nsecs = ts.tv_nsec;
|
|
i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
|
|
return Time::from_half_sanitized(ts.tv_sec, extra_secs, nsecs);
|
|
}
|
|
Time Time::from_timeval(const struct timeval& tv)
|
|
{
|
|
i32 usecs = tv.tv_usec;
|
|
i32 extra_secs = sane_mod(usecs, 1'000'000);
|
|
VERIFY(0 <= usecs && usecs < 1'000'000);
|
|
return Time::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000);
|
|
}
|
|
|
|
i64 Time::to_truncated_seconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
if (m_seconds < 0 && m_nanoseconds) {
|
|
// Since m_seconds is negative, adding 1 can't possibly overflow
|
|
return m_seconds + 1;
|
|
}
|
|
return m_seconds;
|
|
}
|
|
i64 Time::to_truncated_milliseconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
|
|
milliseconds *= 1'000;
|
|
milliseconds += m_nanoseconds / 1'000'000;
|
|
if (m_seconds < 0) {
|
|
if (m_nanoseconds % 1'000'000 != 0) {
|
|
// Does not overflow: milliseconds <= 1'999.
|
|
milliseconds++;
|
|
}
|
|
// We dropped one second previously, put it back in now that we have handled the rounding.
|
|
milliseconds -= 1'000;
|
|
}
|
|
if (!milliseconds.has_overflow())
|
|
return milliseconds.value();
|
|
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
|
|
}
|
|
i64 Time::to_truncated_microseconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
|
|
microseconds *= 1'000'000;
|
|
microseconds += m_nanoseconds / 1'000;
|
|
if (m_seconds < 0) {
|
|
if (m_nanoseconds % 1'000 != 0) {
|
|
// Does not overflow: microseconds <= 1'999'999.
|
|
microseconds++;
|
|
}
|
|
// We dropped one second previously, put it back in now that we have handled the rounding.
|
|
microseconds -= 1'000'000;
|
|
}
|
|
if (!microseconds.has_overflow())
|
|
return microseconds.value();
|
|
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
|
|
}
|
|
i64 Time::to_seconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
if (m_seconds >= 0 && m_nanoseconds) {
|
|
Checked<i64> seconds(m_seconds);
|
|
seconds++;
|
|
return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value();
|
|
}
|
|
return m_seconds;
|
|
}
|
|
i64 Time::to_milliseconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
|
|
milliseconds *= 1'000;
|
|
milliseconds += m_nanoseconds / 1'000'000;
|
|
if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0)
|
|
milliseconds++;
|
|
if (m_seconds < 0) {
|
|
// We dropped one second previously, put it back in now that we have handled the rounding.
|
|
milliseconds -= 1'000;
|
|
}
|
|
if (!milliseconds.has_overflow())
|
|
return milliseconds.value();
|
|
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
|
|
}
|
|
i64 Time::to_microseconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
|
|
microseconds *= 1'000'000;
|
|
microseconds += m_nanoseconds / 1'000;
|
|
if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0)
|
|
microseconds++;
|
|
if (m_seconds < 0) {
|
|
// We dropped one second previously, put it back in now that we have handled the rounding.
|
|
microseconds -= 1'000'000;
|
|
}
|
|
if (!microseconds.has_overflow())
|
|
return microseconds.value();
|
|
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
|
|
}
|
|
i64 Time::to_nanoseconds() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
Checked<i64> nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
|
|
nanoseconds *= 1'000'000'000;
|
|
nanoseconds += m_nanoseconds;
|
|
if (m_seconds < 0) {
|
|
// We dropped one second previously, put it back in now that we have handled the rounding.
|
|
nanoseconds -= 1'000'000'000;
|
|
}
|
|
if (!nanoseconds.has_overflow())
|
|
return nanoseconds.value();
|
|
return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
|
|
}
|
|
timespec Time::to_timespec() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
return { static_cast<time_t>(m_seconds), static_cast<long>(m_nanoseconds) };
|
|
}
|
|
timeval Time::to_timeval() const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
return { static_cast<time_t>(m_seconds), static_cast<suseconds_t>(m_nanoseconds) / 1000 };
|
|
}
|
|
|
|
Time Time::operator+(const Time& other) const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
VERIFY(other.m_nanoseconds < 1'000'000'000);
|
|
|
|
u32 new_nsecs = m_nanoseconds + other.m_nanoseconds;
|
|
u32 extra_secs = new_nsecs / 1'000'000'000;
|
|
new_nsecs %= 1'000'000'000;
|
|
|
|
i64 this_secs = m_seconds;
|
|
i64 other_secs = other.m_seconds;
|
|
// We would like to just add "this_secs + other_secs + extra_secs".
|
|
// However, computing this naively may overflow even though the result is in-bounds.
|
|
// Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8.
|
|
// Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126.
|
|
// So we do something more sophisticated:
|
|
if (extra_secs) {
|
|
VERIFY(extra_secs == 1);
|
|
if (this_secs != 0x7fff'ffff'ffff'ffff) {
|
|
this_secs += 1;
|
|
} else if (other_secs != 0x7fff'ffff'ffff'ffff) {
|
|
other_secs += 1;
|
|
} else {
|
|
/* If *both* are INT64_MAX, then adding them will overflow in any case. */
|
|
return Time::max();
|
|
}
|
|
}
|
|
|
|
Checked<i64> new_secs { this_secs };
|
|
new_secs += other_secs;
|
|
if (new_secs.has_overflow()) {
|
|
if (other_secs > 0)
|
|
return Time::max();
|
|
else
|
|
return Time::min();
|
|
}
|
|
|
|
return Time { new_secs.value(), new_nsecs };
|
|
}
|
|
|
|
Time& Time::operator+=(const Time& other)
|
|
{
|
|
*this = *this + other;
|
|
return *this;
|
|
}
|
|
|
|
Time Time::operator-(const Time& other) const
|
|
{
|
|
VERIFY(m_nanoseconds < 1'000'000'000);
|
|
VERIFY(other.m_nanoseconds < 1'000'000'000);
|
|
|
|
if (other.m_nanoseconds)
|
|
return *this + Time((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds);
|
|
|
|
if (other.m_seconds != (i64)-0x8000'0000'0000'0000)
|
|
return *this + Time(-other.m_seconds, 0);
|
|
|
|
// Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds,
|
|
// i.e. add a very large number.
|
|
|
|
if (m_seconds >= 0)
|
|
return Time::max();
|
|
return Time { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds };
|
|
}
|
|
|
|
Time& Time::operator-=(const Time& other)
|
|
{
|
|
*this = *this - other;
|
|
return *this;
|
|
}
|
|
|
|
bool Time::operator<(const Time& other) const
|
|
{
|
|
return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds < other.m_nanoseconds);
|
|
}
|
|
bool Time::operator<=(const Time& other) const
|
|
{
|
|
return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds <= other.m_nanoseconds);
|
|
}
|
|
bool Time::operator>(const Time& other) const
|
|
{
|
|
return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds > other.m_nanoseconds);
|
|
}
|
|
bool Time::operator>=(const Time& other) const
|
|
{
|
|
return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds >= other.m_nanoseconds);
|
|
}
|
|
|
|
Time Time::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds)
|
|
{
|
|
VERIFY(nanoseconds < 1'000'000'000);
|
|
|
|
if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) {
|
|
// Opposite signs mean that we can definitely add them together without fear of overflowing i64:
|
|
seconds += extra_seconds;
|
|
extra_seconds = 0;
|
|
}
|
|
|
|
// Now the only possible way to become invalid is overflowing i64 towards positive infinity:
|
|
if (Checked<i64>::addition_would_overflow<i64, i64>(seconds, extra_seconds)) {
|
|
if (seconds < 0) {
|
|
return Time::min();
|
|
} else {
|
|
return Time::max();
|
|
}
|
|
}
|
|
|
|
return Time { seconds + extra_seconds, nanoseconds };
|
|
}
|
|
|
|
#ifndef KERNEL
|
|
namespace {
|
|
static Time now_time_from_clock(clockid_t clock_id)
|
|
{
|
|
timespec now_spec {};
|
|
::clock_gettime(clock_id, &now_spec);
|
|
return Time::from_timespec(now_spec);
|
|
}
|
|
}
|
|
Time Time::now_realtime()
|
|
{
|
|
return now_time_from_clock(CLOCK_REALTIME);
|
|
}
|
|
|
|
Time Time::now_realtime_coarse()
|
|
{
|
|
return now_time_from_clock(CLOCK_REALTIME_COARSE);
|
|
}
|
|
|
|
Time Time::now_monotonic()
|
|
{
|
|
return now_time_from_clock(CLOCK_MONOTONIC);
|
|
}
|
|
|
|
Time Time::now_monotonic_coarse()
|
|
{
|
|
return now_time_from_clock(CLOCK_MONOTONIC_COARSE);
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|