ladybird/Libraries/LibWasm/AbstractMachine/AbstractMachine.cpp

578 lines
24 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Enumerate.h>
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/BytecodeInterpreter.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/AbstractMachine/Interpreter.h>
#include <LibWasm/AbstractMachine/Validator.h>
#include <LibWasm/Types.h>
namespace Wasm {
Optional<FunctionAddress> Store::allocate(ModuleInstance& instance, Module const& module, CodeSection::Code const& code, TypeIndex type_index)
{
FunctionAddress address { m_functions.size() };
if (type_index.value() > instance.types().size())
return {};
auto& type = instance.types()[type_index.value()];
m_functions.empend(WasmFunction { type, instance, module, code });
return address;
}
Optional<FunctionAddress> Store::allocate(HostFunction&& function)
{
FunctionAddress address { m_functions.size() };
m_functions.empend(HostFunction { move(function) });
return address;
}
Optional<TableAddress> Store::allocate(TableType const& type)
{
TableAddress address { m_tables.size() };
Vector<Reference> elements;
elements.ensure_capacity(type.limits().min());
for (size_t i = 0; i < type.limits().min(); i++)
elements.append(Wasm::Reference { Wasm::Reference::Null { type.element_type() } });
elements.resize(type.limits().min());
m_tables.empend(TableInstance { type, move(elements) });
return address;
}
Optional<MemoryAddress> Store::allocate(MemoryType const& type)
{
MemoryAddress address { m_memories.size() };
auto instance = MemoryInstance::create(type);
if (instance.is_error())
return {};
m_memories.append(instance.release_value());
return address;
}
Optional<GlobalAddress> Store::allocate(GlobalType const& type, Value value)
{
GlobalAddress address { m_globals.size() };
m_globals.append(GlobalInstance { value, type.is_mutable(), type.type() });
return address;
}
Optional<DataAddress> Store::allocate_data(Vector<u8> initializer)
{
DataAddress address { m_datas.size() };
m_datas.append(DataInstance { move(initializer) });
return address;
}
Optional<ElementAddress> Store::allocate(ValueType const& type, Vector<Reference> references)
{
ElementAddress address { m_elements.size() };
m_elements.append(ElementInstance { type, move(references) });
return address;
}
FunctionInstance* Store::get(FunctionAddress address)
{
auto value = address.value();
if (m_functions.size() <= value)
return nullptr;
return &m_functions[value];
}
Module const* Store::get_module_for(Wasm::FunctionAddress address)
{
auto* function = get(address);
if (!function || function->has<HostFunction>())
return nullptr;
return function->get<WasmFunction>().module_ref().ptr();
}
TableInstance* Store::get(TableAddress address)
{
auto value = address.value();
if (m_tables.size() <= value)
return nullptr;
return &m_tables[value];
}
MemoryInstance* Store::get(MemoryAddress address)
{
auto value = address.value();
if (m_memories.size() <= value)
return nullptr;
return &m_memories[value];
}
GlobalInstance* Store::get(GlobalAddress address)
{
auto value = address.value();
if (m_globals.size() <= value)
return nullptr;
return &m_globals[value];
}
ElementInstance* Store::get(ElementAddress address)
{
auto value = address.value();
if (m_elements.size() <= value)
return nullptr;
return &m_elements[value];
}
DataInstance* Store::get(DataAddress address)
{
auto value = address.value();
if (m_datas.size() <= value)
return nullptr;
return &m_datas[value];
}
ErrorOr<void, ValidationError> AbstractMachine::validate(Module& module)
{
if (module.validation_status() != Module::ValidationStatus::Unchecked) {
if (module.validation_status() == Module::ValidationStatus::Valid)
return {};
return ValidationError { module.validation_error() };
}
auto result = Validator {}.validate(module);
if (result.is_error()) {
module.set_validation_error(result.error().error_string);
return result.release_error();
}
return {};
}
InstantiationResult AbstractMachine::instantiate(Module const& module, Vector<ExternValue> externs)
{
if (auto result = validate(const_cast<Module&>(module)); result.is_error())
return InstantiationError { ByteString::formatted("Validation failed: {}", result.error()) };
auto main_module_instance_pointer = make<ModuleInstance>();
auto& main_module_instance = *main_module_instance_pointer;
main_module_instance.types() = module.type_section().types();
Vector<Value> global_values;
Vector<Vector<Reference>> elements;
ModuleInstance auxiliary_instance;
for (auto [i, import_] : enumerate(module.import_section().imports())) {
auto extern_ = externs.at(i);
auto invalid = import_.description().visit(
[&](MemoryType const& mem_type) -> Optional<ByteString> {
if (!extern_.has<MemoryAddress>())
return "Expected memory import"sv;
auto other_mem_type = m_store.get(extern_.get<MemoryAddress>())->type();
if (other_mem_type.limits().is_subset_of(mem_type.limits()))
return {};
return ByteString::formatted("Memory import and extern do not match: {}-{} vs {}-{}", mem_type.limits().min(), mem_type.limits().max(), other_mem_type.limits().min(), other_mem_type.limits().max());
},
[&](TableType const& table_type) -> Optional<ByteString> {
if (!extern_.has<TableAddress>())
return "Expected table import"sv;
auto other_table_type = m_store.get(extern_.get<TableAddress>())->type();
if (table_type.element_type() == other_table_type.element_type()
&& other_table_type.limits().is_subset_of(table_type.limits()))
return {};
return ByteString::formatted("Table import and extern do not match: {}-{} vs {}-{}", table_type.limits().min(), table_type.limits().max(), other_table_type.limits().min(), other_table_type.limits().max());
},
[&](GlobalType const& global_type) -> Optional<ByteString> {
if (!extern_.has<GlobalAddress>())
return "Expected global import"sv;
auto other_global_type = m_store.get(extern_.get<GlobalAddress>())->type();
if (global_type.type() == other_global_type.type()
&& global_type.is_mutable() == other_global_type.is_mutable())
return {};
return "Global import and extern do not match"sv;
},
[&](FunctionType const& type) -> Optional<ByteString> {
if (!extern_.has<FunctionAddress>())
return "Expected function import"sv;
auto other_type = m_store.get(extern_.get<FunctionAddress>())->visit([&](WasmFunction const& wasm_func) { return wasm_func.type(); }, [&](HostFunction const& host_func) { return host_func.type(); });
if (type.results() != other_type.results())
return ByteString::formatted("Function import and extern do not match, results: {} vs {}", type.results(), other_type.results());
if (type.parameters() != other_type.parameters())
return ByteString::formatted("Function import and extern do not match, parameters: {} vs {}", type.parameters(), other_type.parameters());
return {};
},
[&](TypeIndex type_index) -> Optional<ByteString> {
if (!extern_.has<FunctionAddress>())
return "Expected function import"sv;
auto other_type = m_store.get(extern_.get<FunctionAddress>())->visit([&](WasmFunction const& wasm_func) { return wasm_func.type(); }, [&](HostFunction const& host_func) { return host_func.type(); });
auto& type = module.type_section().types()[type_index.value()];
if (type.results() != other_type.results())
return ByteString::formatted("Function import and extern do not match, results: {} vs {}", type.results(), other_type.results());
if (type.parameters() != other_type.parameters())
return ByteString::formatted("Function import and extern do not match, parameters: {} vs {}", type.parameters(), other_type.parameters());
return {};
});
if (invalid.has_value())
return InstantiationError { ByteString::formatted("{}::{}: {}", import_.module(), import_.name(), invalid.release_value()) };
}
for (auto& entry : externs) {
if (auto* ptr = entry.get_pointer<GlobalAddress>())
auxiliary_instance.globals().append(*ptr);
else if (auto* ptr = entry.get_pointer<FunctionAddress>())
auxiliary_instance.functions().append(*ptr);
}
Vector<FunctionAddress> module_functions;
module_functions.ensure_capacity(module.function_section().types().size());
size_t i = 0;
for (auto& code : module.code_section().functions()) {
auto type_index = module.function_section().types()[i];
auto address = m_store.allocate(main_module_instance, module, code, type_index);
VERIFY(address.has_value());
auxiliary_instance.functions().append(*address);
module_functions.append(*address);
++i;
}
BytecodeInterpreter interpreter(m_stack_info);
for (auto& entry : module.global_section().entries()) {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
entry.expression(),
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap())
return InstantiationError { ByteString::formatted("Global value construction trapped: {}", result.trap().reason) };
global_values.append(result.values().first());
}
if (auto result = allocate_all_initial_phase(module, main_module_instance, externs, global_values, module_functions); result.has_value())
return result.release_value();
for (auto& segment : module.element_section().segments()) {
Vector<Reference> references;
for (auto& entry : segment.init) {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
entry,
entry.instructions().size(),
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap())
return InstantiationError { ByteString::formatted("Element construction trapped: {}", result.trap().reason) };
for (auto& value : result.values()) {
auto reference = value.to<Reference>();
references.append(reference);
}
}
elements.append(move(references));
}
if (auto result = allocate_all_final_phase(module, main_module_instance, elements); result.has_value())
return result.release_value();
size_t index = 0;
for (auto& segment : module.element_section().segments()) {
auto current_index = index;
++index;
auto active_ptr = segment.mode.get_pointer<ElementSection::Active>();
auto elem_instance = m_store.get(main_module_instance.elements()[current_index]);
if (!active_ptr) {
if (segment.mode.has<ElementSection::Declarative>())
*elem_instance = ElementInstance(elem_instance->type(), {});
continue;
}
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
active_ptr->expression,
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap())
return InstantiationError { ByteString::formatted("Element section initialisation trapped: {}", result.trap().reason) };
auto d = result.values().first().to<i32>();
auto table_instance = m_store.get(main_module_instance.tables()[active_ptr->index.value()]);
if (current_index >= main_module_instance.elements().size())
return InstantiationError { "Invalid element referenced by active element segment" };
if (!table_instance || !elem_instance)
return InstantiationError { "Invalid element referenced by active element segment" };
Checked<size_t> total_size = elem_instance->references().size();
total_size.saturating_add(d);
if (total_size.value() > table_instance->elements().size())
return InstantiationError { "Table instantiation out of bounds" };
size_t i = 0;
for (auto it = elem_instance->references().begin(); it < elem_instance->references().end(); ++i, ++it)
table_instance->elements()[i + d] = *it;
// Drop element
*m_store.get(main_module_instance.elements()[current_index]) = ElementInstance(elem_instance->type(), {});
}
for (auto& segment : module.data_section().data()) {
Optional<InstantiationError> result = segment.value().visit(
[&](DataSection::Data::Active const& data) -> Optional<InstantiationError> {
Configuration config { m_store };
if (m_should_limit_instruction_count)
config.enable_instruction_count_limit();
config.set_frame(Frame {
auxiliary_instance,
Vector<Value> {},
data.offset,
1,
});
auto result = config.execute(interpreter).assert_wasm_result();
if (result.is_trap())
return InstantiationError { ByteString::formatted("Data section initialisation trapped: {}", result.trap().reason) };
size_t offset = result.values().first().to<u64>();
if (main_module_instance.memories().size() <= data.index.value()) {
return InstantiationError {
ByteString::formatted("Data segment referenced out-of-bounds memory ({}) of max {} entries",
data.index.value(), main_module_instance.memories().size())
};
}
auto maybe_data_address = m_store.allocate_data(data.init);
if (!maybe_data_address.has_value()) {
return InstantiationError { "Failed to allocate a data instance for an active data segment"sv };
}
main_module_instance.datas().append(*maybe_data_address);
auto address = main_module_instance.memories()[data.index.value()];
auto instance = m_store.get(address);
Checked<size_t> checked_offset = data.init.size();
checked_offset += offset;
if (checked_offset.has_overflow() || checked_offset > instance->size()) {
return InstantiationError {
ByteString::formatted("Data segment attempted to write to out-of-bounds memory ({}) in memory of size {}",
offset, instance->size())
};
}
if (!data.init.is_empty())
instance->data().overwrite(offset, data.init.data(), data.init.size());
return {};
},
[&](DataSection::Data::Passive const& passive) -> Optional<InstantiationError> {
auto maybe_data_address = m_store.allocate_data(passive.init);
if (!maybe_data_address.has_value()) {
return InstantiationError { "Failed to allocate a data instance for a passive data segment"sv };
}
main_module_instance.datas().append(*maybe_data_address);
return {};
});
if (result.has_value())
return result.release_value();
}
if (module.start_section().function().has_value()) {
auto& functions = main_module_instance.functions();
auto index = module.start_section().function()->index();
if (functions.size() <= index.value()) {
return InstantiationError { ByteString::formatted("Start section function referenced invalid index {} of max {} entries", index.value(), functions.size()) };
}
auto result = invoke(functions[index.value()], {});
if (result.is_trap())
return InstantiationError { ByteString::formatted("Start function trapped: {}", result.trap().reason) };
}
return InstantiationResult { move(main_module_instance_pointer) };
}
Optional<InstantiationError> AbstractMachine::allocate_all_initial_phase(Module const& module, ModuleInstance& module_instance, Vector<ExternValue>& externs, Vector<Value>& global_values, Vector<FunctionAddress>& own_functions)
{
Optional<InstantiationError> result;
for (auto& entry : externs) {
entry.visit(
[&](FunctionAddress const& address) { module_instance.functions().append(address); },
[&](TableAddress const& address) { module_instance.tables().append(address); },
[&](MemoryAddress const& address) { module_instance.memories().append(address); },
[&](GlobalAddress const& address) { module_instance.globals().append(address); });
}
module_instance.functions().extend(own_functions);
// FIXME: What if this fails?
for (auto& table : module.table_section().tables()) {
auto table_address = m_store.allocate(table.type());
VERIFY(table_address.has_value());
module_instance.tables().append(*table_address);
}
for (auto& memory : module.memory_section().memories()) {
auto memory_address = m_store.allocate(memory.type());
VERIFY(memory_address.has_value());
module_instance.memories().append(*memory_address);
}
size_t index = 0;
for (auto& entry : module.global_section().entries()) {
auto address = m_store.allocate(entry.type(), move(global_values[index]));
VERIFY(address.has_value());
module_instance.globals().append(*address);
index++;
}
for (auto& entry : module.export_section().entries()) {
Variant<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress, Empty> address {};
entry.description().visit(
[&](FunctionIndex const& index) {
if (module_instance.functions().size() > index.value())
address = FunctionAddress { module_instance.functions()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.functions().size());
},
[&](TableIndex const& index) {
if (module_instance.tables().size() > index.value())
address = TableAddress { module_instance.tables()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.tables().size());
},
[&](MemoryIndex const& index) {
if (module_instance.memories().size() > index.value())
address = MemoryAddress { module_instance.memories()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.memories().size());
},
[&](GlobalIndex const& index) {
if (module_instance.globals().size() > index.value())
address = GlobalAddress { module_instance.globals()[index.value()] };
else
dbgln("Failed to export '{}', the exported address ({}) was out of bounds (min: 0, max: {})", entry.name(), index.value(), module_instance.globals().size());
});
if (address.has<Empty>()) {
result = InstantiationError { "An export could not be resolved" };
continue;
}
module_instance.exports().append(ExportInstance {
entry.name(),
move(address).downcast<FunctionAddress, TableAddress, MemoryAddress, GlobalAddress>(),
});
}
return result;
}
Optional<InstantiationError> AbstractMachine::allocate_all_final_phase(Module const& module, ModuleInstance& module_instance, Vector<Vector<Reference>>& elements)
{
size_t index = 0;
for (auto& segment : module.element_section().segments()) {
auto address = m_store.allocate(segment.type, move(elements[index]));
VERIFY(address.has_value());
module_instance.elements().append(*address);
index++;
}
return {};
}
Result AbstractMachine::invoke(FunctionAddress address, Vector<Value> arguments)
{
BytecodeInterpreter interpreter(m_stack_info);
return invoke(interpreter, address, move(arguments));
}
Result AbstractMachine::invoke(Interpreter& interpreter, FunctionAddress address, Vector<Value> arguments)
{
Configuration configuration { m_store };
if (m_should_limit_instruction_count)
configuration.enable_instruction_count_limit();
return configuration.call(interpreter, address, move(arguments));
}
void Linker::link(ModuleInstance const& instance)
{
populate();
if (m_unresolved_imports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto it = instance.exports().find_if([&](auto& export_) { return export_.name() == import_.name; });
if (!it.is_end()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, it->value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
void Linker::link(HashMap<Linker::Name, ExternValue> const& exports)
{
populate();
if (m_unresolved_imports.is_empty())
return;
if (exports.is_empty())
return;
HashTable<Name> resolved_imports;
for (auto& import_ : m_unresolved_imports) {
auto export_ = exports.get(import_);
if (export_.has_value()) {
resolved_imports.set(import_);
m_resolved_imports.set(import_, export_.value());
}
}
for (auto& entry : resolved_imports)
m_unresolved_imports.remove(entry);
}
AK::ErrorOr<Vector<ExternValue>, LinkError> Linker::finish()
{
populate();
if (!m_unresolved_imports.is_empty()) {
if (!m_error.has_value())
m_error = LinkError {};
for (auto& entry : m_unresolved_imports)
m_error->missing_imports.append(entry.name);
return *m_error;
}
if (m_error.has_value())
return *m_error;
// Result must be in the same order as the module imports
Vector<ExternValue> exports;
exports.ensure_capacity(m_ordered_imports.size());
for (auto& import_ : m_ordered_imports)
exports.unchecked_append(*m_resolved_imports.get(import_));
return exports;
}
void Linker::populate()
{
if (!m_ordered_imports.is_empty())
return;
for (auto& import_ : m_module.import_section().imports()) {
m_ordered_imports.append({ import_.module(), import_.name(), import_.description() });
m_unresolved_imports.set(m_ordered_imports.last());
}
}
}