ladybird/Libraries/LibJS/Runtime/Shape.cpp
Shannon Booth f87041bf3a LibGC+Everywhere: Factor out a LibGC from LibJS
Resulting in a massive rename across almost everywhere! Alongside the
namespace change, we now have the following names:

 * JS::NonnullGCPtr -> GC::Ref
 * JS::GCPtr -> GC::Ptr
 * JS::HeapFunction -> GC::Function
 * JS::CellImpl -> GC::Cell
 * JS::Handle -> GC::Root
2024-11-15 14:49:20 +01:00

395 lines
14 KiB
C++

/*
* Copyright (c) 2020-2024, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibGC/DeferGC.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/VM.h>
namespace JS {
GC_DEFINE_ALLOCATOR(Shape);
GC_DEFINE_ALLOCATOR(PrototypeChainValidity);
static HashTable<GC::Ptr<Shape>> s_all_prototype_shapes;
Shape::~Shape()
{
if (m_is_prototype_shape)
s_all_prototype_shapes.remove(this);
}
GC::Ref<Shape> Shape::create_cacheable_dictionary_transition()
{
auto new_shape = heap().allocate<Shape>(m_realm);
new_shape->m_dictionary = true;
new_shape->m_cacheable = true;
new_shape->m_prototype = m_prototype;
invalidate_prototype_if_needed_for_new_prototype(new_shape);
ensure_property_table();
new_shape->ensure_property_table();
(*new_shape->m_property_table) = *m_property_table;
new_shape->m_property_count = new_shape->m_property_table->size();
return new_shape;
}
GC::Ref<Shape> Shape::create_uncacheable_dictionary_transition()
{
auto new_shape = heap().allocate<Shape>(m_realm);
new_shape->m_dictionary = true;
new_shape->m_cacheable = true;
new_shape->m_prototype = m_prototype;
invalidate_prototype_if_needed_for_new_prototype(new_shape);
ensure_property_table();
new_shape->ensure_property_table();
(*new_shape->m_property_table) = *m_property_table;
new_shape->m_property_count = new_shape->m_property_table->size();
return new_shape;
}
GC::Ptr<Shape> Shape::get_or_prune_cached_forward_transition(TransitionKey const& key)
{
if (m_is_prototype_shape)
return nullptr;
if (!m_forward_transitions)
return nullptr;
auto it = m_forward_transitions->find(key);
if (it == m_forward_transitions->end())
return nullptr;
if (!it->value) {
// The cached forward transition has gone stale (from garbage collection). Prune it.
m_forward_transitions->remove(it);
return nullptr;
}
return it->value.ptr();
}
GC::Ptr<Shape> Shape::get_or_prune_cached_delete_transition(StringOrSymbol const& key)
{
if (m_is_prototype_shape)
return nullptr;
if (!m_delete_transitions)
return nullptr;
auto it = m_delete_transitions->find(key);
if (it == m_delete_transitions->end())
return nullptr;
if (!it->value) {
// The cached delete transition has gone stale (from garbage collection). Prune it.
m_delete_transitions->remove(it);
return nullptr;
}
return it->value.ptr();
}
GC::Ptr<Shape> Shape::get_or_prune_cached_prototype_transition(Object* prototype)
{
if (m_is_prototype_shape)
return nullptr;
if (!m_prototype_transitions)
return nullptr;
auto it = m_prototype_transitions->find(prototype);
if (it == m_prototype_transitions->end())
return nullptr;
if (!it->value) {
// The cached prototype transition has gone stale (from garbage collection). Prune it.
m_prototype_transitions->remove(it);
return nullptr;
}
return it->value.ptr();
}
GC::Ref<Shape> Shape::create_put_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto existing_shape = get_or_prune_cached_forward_transition(key))
return *existing_shape;
auto new_shape = heap().allocate<Shape>(*this, property_key, attributes, TransitionType::Put);
invalidate_prototype_if_needed_for_new_prototype(new_shape);
if (!m_is_prototype_shape) {
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
}
return new_shape;
}
GC::Ref<Shape> Shape::create_configure_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
TransitionKey key { property_key, attributes };
if (auto existing_shape = get_or_prune_cached_forward_transition(key))
return *existing_shape;
auto new_shape = heap().allocate<Shape>(*this, property_key, attributes, TransitionType::Configure);
invalidate_prototype_if_needed_for_new_prototype(new_shape);
if (!m_is_prototype_shape) {
if (!m_forward_transitions)
m_forward_transitions = make<HashMap<TransitionKey, WeakPtr<Shape>>>();
m_forward_transitions->set(key, new_shape.ptr());
}
return new_shape;
}
GC::Ref<Shape> Shape::create_prototype_transition(Object* new_prototype)
{
if (new_prototype)
new_prototype->convert_to_prototype_if_needed();
if (auto existing_shape = get_or_prune_cached_prototype_transition(new_prototype))
return *existing_shape;
auto new_shape = heap().allocate<Shape>(*this, new_prototype);
invalidate_prototype_if_needed_for_new_prototype(new_shape);
if (!m_is_prototype_shape) {
if (!m_prototype_transitions)
m_prototype_transitions = make<HashMap<GC::Ptr<Object>, WeakPtr<Shape>>>();
m_prototype_transitions->set(new_prototype, new_shape.ptr());
}
return new_shape;
}
Shape::Shape(Realm& realm)
: m_realm(realm)
{
}
Shape::Shape(Shape& previous_shape, StringOrSymbol const& property_key, PropertyAttributes attributes, TransitionType transition_type)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_property_key(property_key)
, m_prototype(previous_shape.m_prototype)
, m_property_count(transition_type == TransitionType::Put ? previous_shape.m_property_count + 1 : previous_shape.m_property_count)
, m_attributes(attributes)
, m_transition_type(transition_type)
{
}
Shape::Shape(Shape& previous_shape, StringOrSymbol const& property_key, TransitionType transition_type)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_property_key(property_key)
, m_prototype(previous_shape.m_prototype)
, m_property_count(previous_shape.m_property_count - 1)
, m_transition_type(transition_type)
{
VERIFY(transition_type == TransitionType::Delete);
}
Shape::Shape(Shape& previous_shape, Object* new_prototype)
: m_realm(previous_shape.m_realm)
, m_previous(&previous_shape)
, m_prototype(new_prototype)
, m_property_count(previous_shape.m_property_count)
, m_transition_type(TransitionType::Prototype)
{
}
void Shape::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_realm);
visitor.visit(m_prototype);
visitor.visit(m_previous);
m_property_key.visit_edges(visitor);
// NOTE: We don't need to mark the keys in the property table, since they are guaranteed
// to also be marked by the chain of shapes leading up to this one.
visitor.ignore(m_prototype_transitions);
// FIXME: The forward transition keys should be weak, but we have to mark them for now in case they go stale.
if (m_forward_transitions) {
for (auto& it : *m_forward_transitions)
it.key.property_key.visit_edges(visitor);
}
// FIXME: The delete transition keys should be weak, but we have to mark them for now in case they go stale.
if (m_delete_transitions) {
for (auto& it : *m_delete_transitions)
it.key.visit_edges(visitor);
}
visitor.visit(m_prototype_chain_validity);
}
Optional<PropertyMetadata> Shape::lookup(StringOrSymbol const& property_key) const
{
if (m_property_count == 0)
return {};
auto property = property_table().get(property_key);
if (!property.has_value())
return {};
return property;
}
FLATTEN OrderedHashMap<StringOrSymbol, PropertyMetadata> const& Shape::property_table() const
{
ensure_property_table();
return *m_property_table;
}
void Shape::ensure_property_table() const
{
if (m_property_table)
return;
m_property_table = make<OrderedHashMap<StringOrSymbol, PropertyMetadata>>();
u32 next_offset = 0;
Vector<Shape const&, 64> transition_chain;
transition_chain.append(*this);
for (auto shape = m_previous; shape; shape = shape->m_previous) {
if (shape->m_property_table) {
*m_property_table = *shape->m_property_table;
next_offset = shape->m_property_count;
break;
}
transition_chain.append(*shape);
}
for (auto const& shape : transition_chain.in_reverse()) {
if (!shape.m_property_key.is_valid()) {
// Ignore prototype transitions as they don't affect the key map.
continue;
}
if (shape.m_transition_type == TransitionType::Put) {
m_property_table->set(shape.m_property_key, { next_offset++, shape.m_attributes });
} else if (shape.m_transition_type == TransitionType::Configure) {
auto it = m_property_table->find(shape.m_property_key);
VERIFY(it != m_property_table->end());
it->value.attributes = shape.m_attributes;
} else if (shape.m_transition_type == TransitionType::Delete) {
auto remove_it = m_property_table->find(shape.m_property_key);
VERIFY(remove_it != m_property_table->end());
auto removed_offset = remove_it->value.offset;
m_property_table->remove(remove_it);
for (auto& it : *m_property_table) {
if (it.value.offset > removed_offset)
--it.value.offset;
}
--next_offset;
}
}
}
GC::Ref<Shape> Shape::create_delete_transition(StringOrSymbol const& property_key)
{
if (auto existing_shape = get_or_prune_cached_delete_transition(property_key))
return *existing_shape;
auto new_shape = heap().allocate<Shape>(*this, property_key, TransitionType::Delete);
invalidate_prototype_if_needed_for_new_prototype(new_shape);
if (!m_delete_transitions)
m_delete_transitions = make<HashMap<StringOrSymbol, WeakPtr<Shape>>>();
m_delete_transitions->set(property_key, new_shape.ptr());
return new_shape;
}
void Shape::add_property_without_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
ensure_property_table();
if (m_property_table->set(property_key, { m_property_count, attributes }) == AK::HashSetResult::InsertedNewEntry) {
VERIFY(m_property_count < NumericLimits<u32>::max());
++m_property_count;
}
}
FLATTEN void Shape::add_property_without_transition(PropertyKey const& property_key, PropertyAttributes attributes)
{
add_property_without_transition(property_key.to_string_or_symbol(), attributes);
}
void Shape::set_property_attributes_without_transition(StringOrSymbol const& property_key, PropertyAttributes attributes)
{
VERIFY(is_dictionary());
VERIFY(m_property_table);
auto it = m_property_table->find(property_key);
VERIFY(it != m_property_table->end());
it->value.attributes = attributes;
m_property_table->set(property_key, it->value);
}
void Shape::remove_property_without_transition(StringOrSymbol const& property_key, u32 offset)
{
VERIFY(is_uncacheable_dictionary());
VERIFY(m_property_table);
if (m_property_table->remove(property_key))
--m_property_count;
for (auto& it : *m_property_table) {
VERIFY(it.value.offset != offset);
if (it.value.offset > offset)
--it.value.offset;
}
}
GC::Ref<Shape> Shape::create_for_prototype(GC::Ref<Realm> realm, GC::Ptr<Object> prototype)
{
auto new_shape = realm->heap().allocate<Shape>(realm);
s_all_prototype_shapes.set(new_shape);
new_shape->m_is_prototype_shape = true;
new_shape->m_prototype = prototype;
new_shape->m_prototype_chain_validity = realm->heap().allocate<PrototypeChainValidity>();
return new_shape;
}
GC::Ref<Shape> Shape::clone_for_prototype()
{
VERIFY(!m_is_prototype_shape);
VERIFY(!m_prototype_chain_validity);
auto new_shape = heap().allocate<Shape>(m_realm);
s_all_prototype_shapes.set(new_shape);
new_shape->m_is_prototype_shape = true;
new_shape->m_prototype = m_prototype;
ensure_property_table();
new_shape->ensure_property_table();
(*new_shape->m_property_table) = *m_property_table;
new_shape->m_property_count = new_shape->m_property_table->size();
new_shape->m_prototype_chain_validity = heap().allocate<PrototypeChainValidity>();
return new_shape;
}
void Shape::set_prototype_without_transition(Object* new_prototype)
{
VERIFY(new_prototype);
new_prototype->convert_to_prototype_if_needed();
m_prototype = new_prototype;
}
void Shape::set_prototype_shape()
{
VERIFY(!m_is_prototype_shape);
s_all_prototype_shapes.set(this);
m_is_prototype_shape = true;
m_prototype_chain_validity = heap().allocate<PrototypeChainValidity>();
}
void Shape::invalidate_prototype_if_needed_for_new_prototype(GC::Ref<Shape> new_prototype_shape)
{
if (!m_is_prototype_shape)
return;
new_prototype_shape->set_prototype_shape();
m_prototype_chain_validity->set_valid(false);
invalidate_all_prototype_chains_leading_to_this();
}
void Shape::invalidate_all_prototype_chains_leading_to_this()
{
HashTable<Shape*> shapes_to_invalidate;
for (auto& candidate : s_all_prototype_shapes) {
if (!candidate->m_prototype)
continue;
for (auto* current_prototype_shape = &candidate->m_prototype->shape(); current_prototype_shape; current_prototype_shape = current_prototype_shape->prototype() ? &current_prototype_shape->prototype()->shape() : nullptr) {
if (current_prototype_shape == this) {
VERIFY(candidate->m_is_prototype_shape);
shapes_to_invalidate.set(candidate);
break;
}
}
}
if (shapes_to_invalidate.is_empty())
return;
for (auto* shape : shapes_to_invalidate) {
shape->m_prototype_chain_validity->set_valid(false);
shape->m_prototype_chain_validity = heap().allocate<PrototypeChainValidity>();
}
}
}