ladybird/Libraries/LibJS/Runtime/IndexedProperties.cpp

318 lines
8.7 KiB
C++

/*
* Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/QuickSort.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/IndexedProperties.h>
namespace JS {
constexpr size_t const SPARSE_ARRAY_HOLE_THRESHOLD = 200;
constexpr size_t const LENGTH_SETTER_GENERIC_STORAGE_THRESHOLD = 4 * MiB;
SimpleIndexedPropertyStorage::SimpleIndexedPropertyStorage(Vector<Value>&& initial_values)
: IndexedPropertyStorage(IsSimpleStorage::Yes)
, m_array_size(initial_values.size())
, m_packed_elements(move(initial_values))
{
}
bool SimpleIndexedPropertyStorage::has_index(u32 index) const
{
return inline_has_index(index);
}
Optional<ValueAndAttributes> SimpleIndexedPropertyStorage::get(u32 index) const
{
return inline_get(index);
}
void SimpleIndexedPropertyStorage::grow_storage_if_needed()
{
if (m_array_size <= m_packed_elements.size())
return;
if (m_array_size <= m_packed_elements.capacity()) {
m_packed_elements.resize_and_keep_capacity(m_array_size);
} else {
// When the array is actually full grow storage by 25% at a time.
m_packed_elements.resize_and_keep_capacity(m_array_size + (m_array_size / 4));
}
}
void SimpleIndexedPropertyStorage::put(u32 index, Value value, PropertyAttributes attributes)
{
VERIFY(attributes == default_attributes);
if (index >= m_array_size) {
m_array_size = index + 1;
grow_storage_if_needed();
}
m_packed_elements[index] = value;
}
void SimpleIndexedPropertyStorage::remove(u32 index)
{
VERIFY(index < m_array_size);
m_packed_elements[index] = {};
}
ValueAndAttributes SimpleIndexedPropertyStorage::take_first()
{
m_array_size--;
return { m_packed_elements.take_first(), default_attributes };
}
ValueAndAttributes SimpleIndexedPropertyStorage::take_last()
{
m_array_size--;
auto last_element = m_packed_elements[m_array_size];
m_packed_elements[m_array_size] = {};
return { last_element, default_attributes };
}
bool SimpleIndexedPropertyStorage::set_array_like_size(size_t new_size)
{
m_array_size = new_size;
m_packed_elements.resize_and_keep_capacity(new_size);
return true;
}
GenericIndexedPropertyStorage::GenericIndexedPropertyStorage(SimpleIndexedPropertyStorage&& storage)
: IndexedPropertyStorage(IsSimpleStorage::No)
{
m_array_size = storage.array_like_size();
for (size_t i = 0; i < storage.m_packed_elements.size(); ++i) {
auto value = storage.m_packed_elements[i];
if (!value.is_empty())
m_sparse_elements.set(i, { value, default_attributes });
}
}
bool GenericIndexedPropertyStorage::has_index(u32 index) const
{
return m_sparse_elements.contains(index);
}
Optional<ValueAndAttributes> GenericIndexedPropertyStorage::get(u32 index) const
{
if (index >= m_array_size)
return {};
return m_sparse_elements.get(index);
}
void GenericIndexedPropertyStorage::put(u32 index, Value value, PropertyAttributes attributes)
{
if (index >= m_array_size)
m_array_size = index + 1;
m_sparse_elements.set(index, { value, attributes });
}
void GenericIndexedPropertyStorage::remove(u32 index)
{
VERIFY(index < m_array_size);
m_sparse_elements.remove(index);
}
ValueAndAttributes GenericIndexedPropertyStorage::take_first()
{
VERIFY(m_array_size > 0);
m_array_size--;
auto indices = m_sparse_elements.keys();
quick_sort(indices);
auto it = m_sparse_elements.find(indices.first());
auto first_element = it->value;
m_sparse_elements.remove(it);
return first_element;
}
ValueAndAttributes GenericIndexedPropertyStorage::take_last()
{
VERIFY(m_array_size > 0);
m_array_size--;
auto result = m_sparse_elements.get(m_array_size);
if (!result.has_value())
return {};
m_sparse_elements.remove(m_array_size);
return result.value();
}
bool GenericIndexedPropertyStorage::set_array_like_size(size_t new_size)
{
if (new_size == m_array_size)
return true;
if (new_size >= m_array_size) {
m_array_size = new_size;
return true;
}
bool any_failed = false;
size_t highest_index = 0;
HashMap<u32, ValueAndAttributes> new_sparse_elements;
for (auto& entry : m_sparse_elements) {
if (entry.key >= new_size) {
if (entry.value.attributes.is_configurable())
continue;
else
any_failed = true;
}
new_sparse_elements.set(entry.key, entry.value);
highest_index = max(highest_index, entry.key);
}
if (any_failed)
m_array_size = highest_index + 1;
else
m_array_size = new_size;
m_sparse_elements = move(new_sparse_elements);
return !any_failed;
}
IndexedPropertyIterator::IndexedPropertyIterator(IndexedProperties const& indexed_properties, u32 staring_index, bool skip_empty)
: m_indexed_properties(indexed_properties)
, m_index(staring_index)
, m_skip_empty(skip_empty)
{
if (m_skip_empty) {
m_cached_indices = m_indexed_properties.indices();
skip_empty_indices();
}
}
IndexedPropertyIterator& IndexedPropertyIterator::operator++()
{
m_index++;
if (m_skip_empty)
skip_empty_indices();
return *this;
}
IndexedPropertyIterator& IndexedPropertyIterator::operator*()
{
return *this;
}
bool IndexedPropertyIterator::operator!=(IndexedPropertyIterator const& other) const
{
return m_index != other.m_index;
}
void IndexedPropertyIterator::skip_empty_indices()
{
for (size_t i = m_next_cached_index; i < m_cached_indices.size(); i++) {
auto index = m_cached_indices[i];
if (index < m_index)
continue;
m_index = index;
m_next_cached_index = i + 1;
return;
}
m_index = m_indexed_properties.array_like_size();
}
Optional<ValueAndAttributes> IndexedProperties::get(u32 index) const
{
if (!m_storage)
return {};
return m_storage->get(index);
}
void IndexedProperties::put(u32 index, Value value, PropertyAttributes attributes)
{
ensure_storage();
if (m_storage->is_simple_storage() && (attributes != default_attributes || index > (array_like_size() + SPARSE_ARRAY_HOLE_THRESHOLD))) {
switch_to_generic_storage();
}
m_storage->put(index, value, attributes);
}
void IndexedProperties::remove(u32 index)
{
VERIFY(m_storage);
VERIFY(m_storage->has_index(index));
m_storage->remove(index);
}
bool IndexedProperties::set_array_like_size(size_t new_size)
{
ensure_storage();
auto current_array_like_size = array_like_size();
// We can't use simple storage for lengths that don't fit in an i32.
// Also, to avoid gigantic unused storage allocations, let's put an (arbitrary) 4M cap on simple storage here.
// This prevents something like "a = []; a.length = 0x80000000;" from allocating 2G entries.
if (m_storage->is_simple_storage()
&& (new_size > NumericLimits<i32>::max()
|| (current_array_like_size < LENGTH_SETTER_GENERIC_STORAGE_THRESHOLD && new_size > LENGTH_SETTER_GENERIC_STORAGE_THRESHOLD))) {
switch_to_generic_storage();
}
return m_storage->set_array_like_size(new_size);
}
size_t IndexedProperties::real_size() const
{
if (!m_storage)
return 0;
if (m_storage->is_simple_storage()) {
auto& packed_elements = static_cast<SimpleIndexedPropertyStorage const&>(*m_storage).elements();
size_t size = 0;
for (auto& element : packed_elements) {
if (!element.is_empty())
++size;
}
return size;
}
return static_cast<GenericIndexedPropertyStorage const&>(*m_storage).size();
}
Vector<u32> IndexedProperties::indices() const
{
if (!m_storage)
return {};
if (m_storage->is_simple_storage()) {
auto const& storage = static_cast<SimpleIndexedPropertyStorage const&>(*m_storage);
auto const& elements = storage.elements();
Vector<u32> indices;
indices.ensure_capacity(storage.array_like_size());
for (size_t i = 0; i < elements.size(); ++i) {
if (!elements.at(i).is_empty())
indices.unchecked_append(i);
}
return indices;
}
auto const& storage = static_cast<GenericIndexedPropertyStorage const&>(*m_storage);
auto indices = storage.sparse_elements().keys();
quick_sort(indices);
return indices;
}
void IndexedProperties::switch_to_generic_storage()
{
if (!m_storage) {
m_storage = make<GenericIndexedPropertyStorage>();
return;
}
auto& storage = static_cast<SimpleIndexedPropertyStorage&>(*m_storage);
m_storage = make<GenericIndexedPropertyStorage>(move(storage));
}
void IndexedProperties::ensure_storage()
{
if (!m_storage)
m_storage = make<SimpleIndexedPropertyStorage>();
}
}