ladybird/Libraries/LibJS/Runtime/GlobalObject.cpp
Timothy Flynn f7517c5b8d LibJS: Remove our existing Temporal implementation
Our Temporal implementation is woefully out of date. The spec has been
so vastly rewritten that it is unfortunately not practical to update our
implementation in-place. Even just removing Temporal objects that were
removed from the spec, or updating any of the simpler remaining objects,
has proven to be a mess in previous attempts.

So, this removes our Temporal implementation. AOs used by other specs
are left intact.
2024-11-20 19:04:30 -05:00

657 lines
33 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/CharacterTypes.h>
#include <AK/FloatingPointStringConversions.h>
#include <AK/Hex.h>
#include <AK/UnicodeUtils.h>
#include <AK/Utf16View.h>
#include <AK/Utf8View.h>
#include <LibGC/DeferGC.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/AggregateErrorConstructor.h>
#include <LibJS/Runtime/ArrayBufferConstructor.h>
#include <LibJS/Runtime/ArrayConstructor.h>
#include <LibJS/Runtime/ArrayPrototype.h>
#include <LibJS/Runtime/AsyncFunctionConstructor.h>
#include <LibJS/Runtime/AsyncGeneratorFunctionConstructor.h>
#include <LibJS/Runtime/AsyncGeneratorPrototype.h>
#include <LibJS/Runtime/AtomicsObject.h>
#include <LibJS/Runtime/BigIntConstructor.h>
#include <LibJS/Runtime/BooleanConstructor.h>
#include <LibJS/Runtime/ConsoleObject.h>
#include <LibJS/Runtime/DataViewConstructor.h>
#include <LibJS/Runtime/DateConstructor.h>
#include <LibJS/Runtime/DisposableStackConstructor.h>
#include <LibJS/Runtime/ErrorConstructor.h>
#include <LibJS/Runtime/FinalizationRegistryConstructor.h>
#include <LibJS/Runtime/FinalizationRegistryPrototype.h>
#include <LibJS/Runtime/FunctionConstructor.h>
#include <LibJS/Runtime/GeneratorFunctionConstructor.h>
#include <LibJS/Runtime/GeneratorPrototype.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/CollatorConstructor.h>
#include <LibJS/Runtime/Intl/DateTimeFormatConstructor.h>
#include <LibJS/Runtime/Intl/DisplayNamesConstructor.h>
#include <LibJS/Runtime/Intl/DurationFormatConstructor.h>
#include <LibJS/Runtime/Intl/Intl.h>
#include <LibJS/Runtime/Intl/ListFormatConstructor.h>
#include <LibJS/Runtime/Intl/LocaleConstructor.h>
#include <LibJS/Runtime/Intl/NumberFormatConstructor.h>
#include <LibJS/Runtime/Intl/PluralRulesConstructor.h>
#include <LibJS/Runtime/Intl/RelativeTimeFormatConstructor.h>
#include <LibJS/Runtime/Intl/SegmenterConstructor.h>
#include <LibJS/Runtime/IteratorConstructor.h>
#include <LibJS/Runtime/JSONObject.h>
#include <LibJS/Runtime/MapConstructor.h>
#include <LibJS/Runtime/MathObject.h>
#include <LibJS/Runtime/NumberConstructor.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/ObjectConstructor.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/ProxyConstructor.h>
#include <LibJS/Runtime/Realm.h>
#include <LibJS/Runtime/ReflectObject.h>
#include <LibJS/Runtime/RegExpConstructor.h>
#include <LibJS/Runtime/SetConstructor.h>
#include <LibJS/Runtime/ShadowRealmConstructor.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/SharedArrayBufferConstructor.h>
#include <LibJS/Runtime/StringConstructor.h>
#include <LibJS/Runtime/StringPrototype.h>
#include <LibJS/Runtime/SuppressedErrorConstructor.h>
#include <LibJS/Runtime/SymbolConstructor.h>
#include <LibJS/Runtime/Temporal/Temporal.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibJS/Runtime/Value.h>
#include <LibJS/Runtime/ValueInlines.h>
#include <LibJS/Runtime/WeakMapConstructor.h>
#include <LibJS/Runtime/WeakRefConstructor.h>
#include <LibJS/Runtime/WeakSetConstructor.h>
namespace JS {
GC_DEFINE_ALLOCATOR(GlobalObject);
GlobalObject::GlobalObject(Realm& realm)
: Object(GlobalObjectTag::Tag, realm)
{
Object::set_prototype(realm.intrinsics().object_prototype());
}
// 9.3.3 SetDefaultGlobalBindings ( realmRec ), https://tc39.es/ecma262/#sec-setdefaultglobalbindings
void set_default_global_bindings(Realm& realm)
{
auto& vm = realm.vm();
// 1. Let global be realmRec.[[GlobalObject]].
auto& global = realm.global_object();
// 2. For each property of the Global Object specified in clause 19, do
// a. Let name be the String value of the property name.
// b. Let desc be the fully populated data Property Descriptor for the property, containing the specified attributes for the property.
// For properties listed in 19.2, 19.3, or 19.4 the value of the [[Value]] attribute is the corresponding intrinsic object from realmRec.
// c. Perform ? DefinePropertyOrThrow(global, name, desc).
// NOTE: This function is infallible as we set properties directly; property clashes in global object construction are not expected.
u8 attr = Attribute::Writable | Attribute::Configurable;
// 19.2 Function Properties of the Global Object, https://tc39.es/ecma262/#sec-function-properties-of-the-global-object
global.define_direct_property(vm.names.eval, realm.intrinsics().eval_function(), attr);
global.define_direct_property(vm.names.isFinite, realm.intrinsics().is_finite_function(), attr);
global.define_direct_property(vm.names.isNaN, realm.intrinsics().is_nan_function(), attr);
global.define_direct_property(vm.names.parseFloat, realm.intrinsics().parse_float_function(), attr);
global.define_direct_property(vm.names.parseInt, realm.intrinsics().parse_int_function(), attr);
global.define_direct_property(vm.names.decodeURI, realm.intrinsics().decode_uri_function(), attr);
global.define_direct_property(vm.names.decodeURIComponent, realm.intrinsics().decode_uri_component_function(), attr);
global.define_direct_property(vm.names.encodeURI, realm.intrinsics().encode_uri_function(), attr);
global.define_direct_property(vm.names.encodeURIComponent, realm.intrinsics().encode_uri_component_function(), attr);
// 19.1 Value Properties of the Global Object, https://tc39.es/ecma262/#sec-value-properties-of-the-global-object
global.define_direct_property(vm.names.globalThis, &global, attr);
global.define_direct_property(vm.names.Infinity, js_infinity(), 0);
global.define_direct_property(vm.names.NaN, js_nan(), 0);
global.define_direct_property(vm.names.undefined, js_undefined(), 0);
// 19.3 Constructor Properties of the Global Object, https://tc39.es/ecma262/#sec-constructor-properties-of-the-global-object
global.define_intrinsic_accessor(vm.names.AggregateError, attr, [](auto& realm) -> Value { return realm.intrinsics().aggregate_error_constructor(); });
global.define_intrinsic_accessor(vm.names.Array, attr, [](auto& realm) -> Value { return realm.intrinsics().array_constructor(); });
global.define_intrinsic_accessor(vm.names.ArrayBuffer, attr, [](auto& realm) -> Value { return realm.intrinsics().array_buffer_constructor(); });
global.define_intrinsic_accessor(vm.names.BigInt, attr, [](auto& realm) -> Value { return realm.intrinsics().bigint_constructor(); });
global.define_intrinsic_accessor(vm.names.BigInt64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().big_int64_array_constructor(); });
global.define_intrinsic_accessor(vm.names.BigUint64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().big_uint64_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Boolean, attr, [](auto& realm) -> Value { return realm.intrinsics().boolean_constructor(); });
global.define_intrinsic_accessor(vm.names.DataView, attr, [](auto& realm) -> Value { return realm.intrinsics().data_view_constructor(); });
global.define_intrinsic_accessor(vm.names.Date, attr, [](auto& realm) -> Value { return realm.intrinsics().date_constructor(); });
global.define_intrinsic_accessor(vm.names.DisposableStack, attr, [](auto& realm) -> Value { return realm.intrinsics().disposable_stack_constructor(); });
global.define_intrinsic_accessor(vm.names.Error, attr, [](auto& realm) -> Value { return realm.intrinsics().error_constructor(); });
global.define_intrinsic_accessor(vm.names.EvalError, attr, [](auto& realm) -> Value { return realm.intrinsics().eval_error_constructor(); });
global.define_intrinsic_accessor(vm.names.FinalizationRegistry, attr, [](auto& realm) -> Value { return realm.intrinsics().finalization_registry_constructor(); });
global.define_intrinsic_accessor(vm.names.Float16Array, attr, [](auto& realm) -> Value { return realm.intrinsics().float16_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Float32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().float32_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Float64Array, attr, [](auto& realm) -> Value { return realm.intrinsics().float64_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Function, attr, [](auto& realm) -> Value { return realm.intrinsics().function_constructor(); });
global.define_intrinsic_accessor(vm.names.Int8Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int8_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Int16Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int16_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Int32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().int32_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Iterator, attr, [](auto& realm) -> Value { return realm.intrinsics().iterator_constructor(); });
global.define_intrinsic_accessor(vm.names.Map, attr, [](auto& realm) -> Value { return realm.intrinsics().map_constructor(); });
global.define_intrinsic_accessor(vm.names.Number, attr, [](auto& realm) -> Value { return realm.intrinsics().number_constructor(); });
global.define_intrinsic_accessor(vm.names.Object, attr, [](auto& realm) -> Value { return realm.intrinsics().object_constructor(); });
global.define_intrinsic_accessor(vm.names.Promise, attr, [](auto& realm) -> Value { return realm.intrinsics().promise_constructor(); });
global.define_intrinsic_accessor(vm.names.Proxy, attr, [](auto& realm) -> Value { return realm.intrinsics().proxy_constructor(); });
global.define_intrinsic_accessor(vm.names.RangeError, attr, [](auto& realm) -> Value { return realm.intrinsics().range_error_constructor(); });
global.define_intrinsic_accessor(vm.names.ReferenceError, attr, [](auto& realm) -> Value { return realm.intrinsics().reference_error_constructor(); });
global.define_intrinsic_accessor(vm.names.RegExp, attr, [](auto& realm) -> Value { return realm.intrinsics().regexp_constructor(); });
global.define_intrinsic_accessor(vm.names.Set, attr, [](auto& realm) -> Value { return realm.intrinsics().set_constructor(); });
global.define_intrinsic_accessor(vm.names.ShadowRealm, attr, [](auto& realm) -> Value { return realm.intrinsics().shadow_realm_constructor(); });
global.define_intrinsic_accessor(vm.names.SharedArrayBuffer, attr, [](auto& realm) -> Value { return realm.intrinsics().shared_array_buffer_constructor(); });
global.define_intrinsic_accessor(vm.names.String, attr, [](auto& realm) -> Value { return realm.intrinsics().string_constructor(); });
global.define_intrinsic_accessor(vm.names.SuppressedError, attr, [](auto& realm) -> Value { return realm.intrinsics().suppressed_error_constructor(); });
global.define_intrinsic_accessor(vm.names.Symbol, attr, [](auto& realm) -> Value { return realm.intrinsics().symbol_constructor(); });
global.define_intrinsic_accessor(vm.names.SyntaxError, attr, [](auto& realm) -> Value { return realm.intrinsics().syntax_error_constructor(); });
global.define_intrinsic_accessor(vm.names.TypeError, attr, [](auto& realm) -> Value { return realm.intrinsics().type_error_constructor(); });
global.define_intrinsic_accessor(vm.names.Uint8Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint8_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Uint8ClampedArray, attr, [](auto& realm) -> Value { return realm.intrinsics().uint8_clamped_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Uint16Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint16_array_constructor(); });
global.define_intrinsic_accessor(vm.names.Uint32Array, attr, [](auto& realm) -> Value { return realm.intrinsics().uint32_array_constructor(); });
global.define_intrinsic_accessor(vm.names.URIError, attr, [](auto& realm) -> Value { return realm.intrinsics().uri_error_constructor(); });
global.define_intrinsic_accessor(vm.names.WeakMap, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_map_constructor(); });
global.define_intrinsic_accessor(vm.names.WeakRef, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_ref_constructor(); });
global.define_intrinsic_accessor(vm.names.WeakSet, attr, [](auto& realm) -> Value { return realm.intrinsics().weak_set_constructor(); });
// 19.4 Other Properties of the Global Object, https://tc39.es/ecma262/#sec-other-properties-of-the-global-object
global.define_intrinsic_accessor(vm.names.Atomics, attr, [](auto& realm) -> Value { return realm.intrinsics().atomics_object(); });
global.define_intrinsic_accessor(vm.names.Intl, attr, [](auto& realm) -> Value { return realm.intrinsics().intl_object(); });
global.define_intrinsic_accessor(vm.names.JSON, attr, [](auto& realm) -> Value { return realm.intrinsics().json_object(); });
global.define_intrinsic_accessor(vm.names.Math, attr, [](auto& realm) -> Value { return realm.intrinsics().math_object(); });
global.define_intrinsic_accessor(vm.names.Reflect, attr, [](auto& realm) -> Value { return realm.intrinsics().reflect_object(); });
global.define_intrinsic_accessor(vm.names.Temporal, attr, [](auto& realm) -> Value { return realm.intrinsics().temporal_object(); });
// B.2.1 Additional Properties of the Global Object, https://tc39.es/ecma262/#sec-additional-properties-of-the-global-object
global.define_direct_property(vm.names.escape, realm.intrinsics().escape_function(), attr);
global.define_direct_property(vm.names.unescape, realm.intrinsics().unescape_function(), attr);
// Non-standard
global.define_direct_property(vm.names.InternalError, realm.intrinsics().internal_error_constructor(), attr);
global.define_direct_property(vm.names.console, realm.intrinsics().console_object(), attr);
// 3. Return unused.
}
void GlobalObject::initialize(Realm& realm)
{
Base::initialize(realm);
auto& vm = this->vm();
// Non-standard
u8 attr = Attribute::Writable | Attribute::Configurable;
define_native_function(realm, vm.names.gc, gc, 0, attr);
}
GlobalObject::~GlobalObject() = default;
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::gc)
{
vm.heap().collect_garbage();
return js_undefined();
}
// 19.2.1 eval ( x ), https://tc39.es/ecma262/#sec-eval-x
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::eval)
{
auto x = vm.argument(0);
// 1. Return ? PerformEval(x, false, false).
return perform_eval(vm, x, CallerMode::NonStrict, EvalMode::Indirect);
}
// 19.2.2 isFinite ( number ), https://tc39.es/ecma262/#sec-isfinite-number
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::is_finite)
{
auto number = vm.argument(0);
// 1. Let num be ? ToNumber(number).
auto num = TRY(number.to_number(vm));
// 2. If num is not finite, return false.
// 3. Otherwise, return true.
return Value(num.is_finite_number());
}
// 19.2.3 isNaN ( number ), https://tc39.es/ecma262/#sec-isnan-number
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::is_nan)
{
auto number = vm.argument(0);
// 1. Let num be ? ToNumber(number).
auto num = TRY(number.to_number(vm));
// 2. If num is NaN, return true.
// 3. Otherwise, return false.
return Value(num.is_nan());
}
// 19.2.4 parseFloat ( string ), https://tc39.es/ecma262/#sec-parsefloat-string
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::parse_float)
{
auto string = vm.argument(0);
// OPTIMIZATION: We can skip the number-to-string-to-number round trip when the value is already a number.
if (string.is_number())
return string;
// 1. Let inputString be ? ToString(string).
auto input_string = TRY(string.to_string(vm));
// 2. Let trimmedString be ! TrimString(inputString, start).
auto trimmed_string = MUST(trim_string(vm, PrimitiveString::create(vm, move(input_string)), TrimMode::Left));
if (trimmed_string.is_empty())
return js_nan();
// 3. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see 7.1.4.1), return NaN.
// 4. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies the syntax of a StrDecimalLiteral.
// 5. Let parsedNumber be ParseText(StringToCodePoints(numberString), StrDecimalLiteral).
// 6. Assert: parsedNumber is a Parse Node.
// 7. Return StringNumericValue of parsedNumber.
auto trimmed_string_view = trimmed_string.bytes_as_string_view();
auto const* begin = trimmed_string_view.characters_without_null_termination();
auto const* end = begin + trimmed_string_view.length();
auto parsed_number = parse_first_floating_point<double>(begin, end);
if (parsed_number.parsed_value())
return parsed_number.value;
auto first_code_point = *trimmed_string.code_points().begin();
if (first_code_point == '-' || first_code_point == '+')
trimmed_string_view = trimmed_string_view.substring_view(1);
if (trimmed_string_view.starts_with("Infinity"sv, AK::CaseSensitivity::CaseSensitive)) {
// Only an immediate - means we should return negative infinity
return first_code_point == '-' ? js_negative_infinity() : js_infinity();
}
return js_nan();
}
// 19.2.5 parseInt ( string, radix ), https://tc39.es/ecma262/#sec-parseint-string-radix
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::parse_int)
{
auto string = vm.argument(0);
// 1. Let inputString be ? ToString(string).
auto input_string = TRY(string.to_string(vm));
// 2. Let S be ! TrimString(inputString, start).
String trimmed_string;
// OPTIMIZATION: We can skip the trimming step when the value already starts with an alphanumeric ASCII character.
if (input_string.is_empty() || is_ascii_alphanumeric(input_string.bytes_as_string_view()[0])) {
trimmed_string = input_string;
} else {
trimmed_string = MUST(trim_string(vm, PrimitiveString::create(vm, move(input_string)), TrimMode::Left));
}
// 3. Let sign be 1.
auto sign = 1;
// 4. If S is not empty and the first code unit of S is the code unit 0x002D (HYPHEN-MINUS), set sign to -1.
auto first_code_point = trimmed_string.is_empty() ? OptionalNone {} : Optional<u32> { *trimmed_string.code_points().begin() };
if (first_code_point == 0x2Du)
sign = -1;
// 5. If S is not empty and the first code unit of S is the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS), remove the first code unit from S.
auto trimmed_view = trimmed_string.bytes_as_string_view();
if (first_code_point == 0x2Bu || first_code_point == 0x2Du)
trimmed_view = trimmed_view.substring_view(1);
// 6. Let R be (? ToInt32(radix)).
auto radix = TRY(vm.argument(1).to_i32(vm));
// 7. Let stripPrefix be true.
auto strip_prefix = true;
// 8. If R ≠ 0, then
if (radix != 0) {
// a. If R < 2 or R > 36, return NaN.
if (radix < 2 || radix > 36)
return js_nan();
// b. If R ≠ 16, set stripPrefix to false.
if (radix != 16)
strip_prefix = false;
}
// 9. Else,
else {
// a. Set R to 10.
radix = 10;
}
// 10. If stripPrefix is true, then
if (strip_prefix) {
// a. If the length of S is at least 2 and the first two code units of S are either "0x" or "0X", then
if (trimmed_view.length() >= 2 && trimmed_view.substring_view(0, 2).equals_ignoring_ascii_case("0x"sv)) {
// i. Remove the first two code units from S.
trimmed_view = trimmed_view.substring_view(2);
// ii. Set R to 16.
radix = 16;
}
}
// 11. If S contains a code unit that is not a radix-R digit, let end be the index within S of the first such code unit; otherwise, let end be the length of S.
// 12. Let Z be the substring of S from 0 to end.
// 13. If Z is empty, return NaN.
// 14. Let mathInt be the integer value that is represented by Z in radix-R notation, using the letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-approximated integer representing the integer value denoted by Z in radix-R notation.)
auto parse_digit = [&](u32 code_point) -> Optional<u32> {
if (!is_ascii_alphanumeric(code_point))
return {};
auto digit = parse_ascii_base36_digit(code_point);
if (digit >= (u32)radix)
return {};
return digit;
};
bool had_digits = false;
double number = 0;
for (auto code_point : Utf8View(trimmed_view)) {
auto digit = parse_digit(code_point);
if (!digit.has_value())
break;
had_digits = true;
number *= radix;
number += digit.value();
}
if (!had_digits)
return js_nan();
// 15. If mathInt = 0, then
// a. If sign = -1, return -0𝔽.
// b. Return +0𝔽.
// 16. Return 𝔽(sign × mathInt).
return Value(sign * number);
}
// 19.2.6.5 Encode ( string, extraUnescaped ), https://tc39.es/ecma262/#sec-encode
static ThrowCompletionOr<ByteString> encode(VM& vm, ByteString const& string, StringView unescaped_set)
{
auto utf16_string = Utf16String::create(string);
// 1. Let strLen be the length of string.
auto string_length = utf16_string.length_in_code_units();
// 2. Let R be the empty String.
StringBuilder encoded_builder;
// 3. Let alwaysUnescaped be the string-concatenation of the ASCII word characters and "-.!~*'()".
// 4. Let unescapedSet be the string-concatenation of alwaysUnescaped and extraUnescaped.
// OPTIMIZATION: We pass in the entire unescapedSet as a StringView to avoid an extra allocation.
// 5. Let k be 0.
auto k = 0u;
// 6. Repeat,
while (k < string_length) {
// a. If k = strLen, return R.
// Handled below
// b. Let C be the code unit at index k within string.
auto code_unit = utf16_string.code_unit_at(k);
// c. If C is in unescapedSet, then
// NOTE: We assume the unescaped set only contains ascii characters as unescaped_set is a StringView.
if (code_unit < 0x80 && unescaped_set.contains(static_cast<char>(code_unit))) {
// i. Set k to k + 1.
k++;
// ii. Set R to the string-concatenation of R and C.
encoded_builder.append(code_unit);
}
// d. Else,
else {
// i. Let cp be CodePointAt(string, k).
auto code_point = code_point_at(utf16_string.view(), k);
// ii. If cp.[[IsUnpairedSurrogate]] is true, throw a URIError exception.
if (code_point.is_unpaired_surrogate)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
// iii. Set k to k + cp.[[CodeUnitCount]].
k += code_point.code_unit_count;
// iv. Let Octets be the List of octets resulting by applying the UTF-8 transformation to cp.[[CodePoint]].
// v. For each element octet of Octets, do
auto nwritten = AK::UnicodeUtils::code_point_to_utf8(code_point.code_point, [&encoded_builder](u8 octet) {
// 1. Let hex be the String representation of octet, formatted as an uppercase hexadecimal number.
// 2. Set R to the string-concatenation of R, "%", and ! StringPad(hex, 2𝔽, "0", start).
encoded_builder.appendff("%{:02X}", octet);
});
VERIFY(nwritten > 0);
}
}
return encoded_builder.to_byte_string();
}
// 19.2.6.6 Decode ( string, preserveEscapeSet ), https://tc39.es/ecma262/#sec-decode
// FIXME: Add spec comments to this implementation. It deviates a lot, so that's a bit tricky.
static ThrowCompletionOr<ByteString> decode(VM& vm, ByteString const& string, StringView reserved_set)
{
StringBuilder decoded_builder;
auto code_point_start_offset = 0u;
auto expected_continuation_bytes = 0;
for (size_t k = 0; k < string.length(); k++) {
auto code_unit = string[k];
if (code_unit != '%') {
if (expected_continuation_bytes > 0)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
decoded_builder.append(code_unit);
continue;
}
if (k + 2 >= string.length())
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
auto first_digit = decode_hex_digit(string[k + 1]);
if (first_digit >= 16)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
auto second_digit = decode_hex_digit(string[k + 2]);
if (second_digit >= 16)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
u8 decoded_code_unit = (first_digit << 4) | second_digit;
k += 2;
if (expected_continuation_bytes > 0) {
decoded_builder.append(decoded_code_unit);
expected_continuation_bytes--;
if (expected_continuation_bytes == 0 && !Utf8View(decoded_builder.string_view().substring_view(code_point_start_offset)).validate())
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
continue;
}
if (decoded_code_unit < 0x80) {
if (reserved_set.contains(static_cast<char>(decoded_code_unit)))
decoded_builder.append(string.substring_view(k - 2, 3));
else
decoded_builder.append(decoded_code_unit);
continue;
}
auto leading_ones = count_leading_zeroes_safe(static_cast<u8>(~decoded_code_unit));
if (leading_ones == 1 || leading_ones > 4)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
code_point_start_offset = decoded_builder.length();
decoded_builder.append(decoded_code_unit);
expected_continuation_bytes = leading_ones - 1;
}
if (expected_continuation_bytes > 0)
return vm.throw_completion<URIError>(ErrorType::URIMalformed);
return decoded_builder.to_byte_string();
}
// 19.2.6.1 decodeURI ( encodedURI ), https://tc39.es/ecma262/#sec-decodeuri-encodeduri
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::decode_uri)
{
// 1. Let uriString be ? ToString(encodedURI).
auto uri_string = TRY(vm.argument(0).to_byte_string(vm));
// 2. Let preserveEscapeSet be ";/?:@&=+$,#".
// 3. Return ? Decode(uriString, preserveEscapeSet).
auto decoded = TRY(decode(vm, uri_string, ";/?:@&=+$,#"sv));
return PrimitiveString::create(vm, move(decoded));
}
// 19.2.6.2 decodeURIComponent ( encodedURIComponent ), https://tc39.es/ecma262/#sec-decodeuricomponent-encodeduricomponent
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::decode_uri_component)
{
auto encoded_uri_component = vm.argument(0);
// 1. Let componentString be ? ToString(encodedURIComponent).
auto uri_string = TRY(encoded_uri_component.to_byte_string(vm));
// 2. Let preserveEscapeSet be the empty String.
// 3. Return ? Decode(componentString, preserveEscapeSet).
auto decoded = TRY(decode(vm, uri_string, ""sv));
return PrimitiveString::create(vm, move(decoded));
}
// 19.2.6.3 encodeURI ( uri ), https://tc39.es/ecma262/#sec-encodeuri-uri
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::encode_uri)
{
auto uri = vm.argument(0);
// 1. Let uriString be ? ToString(uri).
auto uri_string = TRY(uri.to_byte_string(vm));
// 2. Let extraUnescaped be ";/?:@&=+$,#".
// 3. Return ? Encode(uriString, extraUnescaped).
auto encoded = TRY(encode(vm, uri_string, ";/?:@&=+$,abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.!~*'()#"sv));
return PrimitiveString::create(vm, move(encoded));
}
// 19.2.6.4 encodeURIComponent ( uriComponent ), https://tc39.es/ecma262/#sec-encodeuricomponent-uricomponent
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::encode_uri_component)
{
auto uri_component = vm.argument(0);
// 1. Let componentString be ? ToString(uriComponent).
auto uri_string = TRY(uri_component.to_byte_string(vm));
// 2. Let extraUnescaped be the empty String.
// 3. Return ? Encode(componentString, extraUnescaped).
auto encoded = TRY(encode(vm, uri_string, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.!~*'()"sv));
return PrimitiveString::create(vm, move(encoded));
}
// B.2.1.1 escape ( string ), https://tc39.es/ecma262/#sec-escape-string
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::escape)
{
// 1. Set string to ? ToString(string).
auto string = TRY(vm.argument(0).to_byte_string(vm));
// 3. Let R be the empty String.
StringBuilder escaped;
// 4. Let unescapedSet be the string-concatenation of the ASCII word characters and "@*+-./".
auto unescaped_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./"sv;
// 2. Let length be the length of string.
// 5. Let k be 0.
// 6. Repeat, while k < length,
for (auto code_point : TRY_OR_THROW_OOM(vm, utf8_to_utf16(string))) {
// a. Let char be the code unit at index k within string.
// b. If unescapedSet contains char, then
// NOTE: We know unescapedSet is ASCII-only, so ensure we have an ASCII codepoint before casting to char.
if (is_ascii(code_point) && unescaped_set.contains(static_cast<char>(code_point))) {
// i. Let S be the String value containing the single code unit char.
escaped.append(code_point);
}
// c. Else,
// i. Let n be the numeric value of char.
// ii. If n < 256, then
else if (code_point < 256) {
// 1. Let hex be the String representation of n, formatted as an uppercase hexadecimal number.
// 2. Let S be the string-concatenation of "%" and ! StringPad(hex, 2𝔽, "0", start).
escaped.appendff("%{:02X}", code_point);
}
// iii. Else,
else {
// 1. Let hex be the String representation of n, formatted as an uppercase hexadecimal number.
// 2. Let S be the string-concatenation of "%u" and ! StringPad(hex, 4𝔽, "0", start).
escaped.appendff("%u{:04X}", code_point);
}
// d. Set R to the string-concatenation of R and S.
// e. Set k to k + 1.
}
// 7. Return R.
return PrimitiveString::create(vm, escaped.to_byte_string());
}
// B.2.1.2 unescape ( string ), https://tc39.es/ecma262/#sec-unescape-string
JS_DEFINE_NATIVE_FUNCTION(GlobalObject::unescape)
{
// 1. Set string to ? ToString(string).
auto string = TRY(vm.argument(0).to_byte_string(vm));
// 2. Let length be the length of string.
ssize_t length = string.length();
// 3. Let R be the empty String.
StringBuilder unescaped(length);
// 4. Let k be 0.
// 5. Repeat, while k ≠ length,
for (auto k = 0; k < length; ++k) {
// a. Let c be the code unit at index k within string.
u32 code_point = string[k];
// b. If c is the code unit 0x0025 (PERCENT SIGN), then
if (code_point == '%') {
// i. Let hexEscape be the empty String.
// ii. Let skip be 0.
// iii. If k ≤ length - 6 and the code unit at index k + 1 within string is the code unit 0x0075 (LATIN SMALL LETTER U), then
if (k <= length - 6 && string[k + 1] == 'u' && is_ascii_hex_digit(string[k + 2]) && is_ascii_hex_digit(string[k + 3]) && is_ascii_hex_digit(string[k + 4]) && is_ascii_hex_digit(string[k + 5])) {
// 1. Set hexEscape to the substring of string from k + 2 to k + 6.
code_point = (parse_ascii_hex_digit(string[k + 2]) << 12) | (parse_ascii_hex_digit(string[k + 3]) << 8) | (parse_ascii_hex_digit(string[k + 4]) << 4) | parse_ascii_hex_digit(string[k + 5]);
// 2. Set skip to 5.
k += 5;
}
// iv. Else if k ≤ length - 3, then
else if (k <= length - 3 && is_ascii_hex_digit(string[k + 1]) && is_ascii_hex_digit(string[k + 2])) {
// 1. Set hexEscape to the substring of string from k + 1 to k + 3.
code_point = (parse_ascii_hex_digit(string[k + 1]) << 4) | parse_ascii_hex_digit(string[k + 2]);
// 2. Set skip to 2.
k += 2;
}
// v. If hexEscape can be interpreted as an expansion of HexDigits[~Sep], then
// 1. Let hexIntegerLiteral be the string-concatenation of "0x" and hexEscape.
// 2. Let n be ! ToNumber(hexIntegerLiteral).
// 3. Set c to the code unit whose value is (n).
// 4. Set k to k + skip.
// NOTE: All of this is already done in the branches above.
}
// c. Set R to the string-concatenation of R and c.
unescaped.append_code_point(code_point);
// d. Set k to k + 1.
}
// 6. Return R.
return PrimitiveString::create(vm, unescaped.to_byte_string());
}
}