ladybird/Libraries/LibGfx/VectorN.h

337 lines
8.1 KiB
C++

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2022, Jelle Raaijmakers <jelle@ladybird.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/ByteString.h>
#include <AK/Error.h>
#include <AK/Math.h>
#include <AK/StdLibExtras.h>
#include <AK/StringView.h>
#define LOOP_UNROLL_N 4
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY(x) STRINGIFY_HELPER(x)
#if defined(AK_COMPILER_CLANG)
# define UNROLL_LOOP _Pragma(STRINGIFY(unroll))
#else
# define UNROLL_LOOP _Pragma(STRINGIFY(GCC unroll(LOOP_UNROLL_N)))
#endif
namespace Gfx {
template<size_t N, typename T>
requires(N >= 2 && N <= 4) class VectorN final {
static_assert(LOOP_UNROLL_N >= N, "Unroll the entire loop for performance.");
public:
[[nodiscard]] constexpr VectorN() = default;
[[nodiscard]] constexpr VectorN(T x, T y)
requires(N == 2)
: m_data { x, y }
{
}
[[nodiscard]] constexpr VectorN(T x, T y, T z)
requires(N == 3)
: m_data { x, y, z }
{
}
[[nodiscard]] constexpr VectorN(T x, T y, T z, T w)
requires(N == 4)
: m_data { x, y, z, w }
{
}
[[nodiscard]] constexpr T x() const { return m_data[0]; }
[[nodiscard]] constexpr T y() const { return m_data[1]; }
[[nodiscard]] constexpr T z() const
requires(N >= 3)
{
return m_data[2];
}
[[nodiscard]] constexpr T w() const
requires(N >= 4)
{
return m_data[3];
}
constexpr void set_x(T value) { m_data[0] = value; }
constexpr void set_y(T value) { m_data[1] = value; }
constexpr void set_z(T value)
requires(N >= 3)
{
m_data[2] = value;
}
constexpr void set_w(T value)
requires(N >= 4)
{
m_data[3] = value;
}
[[nodiscard]] constexpr T const& operator[](size_t index) const
{
VERIFY(index < N);
return m_data[index];
}
[[nodiscard]] constexpr T& operator[](size_t index)
{
VERIFY(index < N);
return m_data[index];
}
constexpr VectorN& operator+=(VectorN const& other)
{
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
m_data[i] += other.data()[i];
return *this;
}
constexpr VectorN& operator-=(VectorN const& other)
{
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
m_data[i] -= other.data()[i];
return *this;
}
constexpr VectorN& operator*=(T const& t)
{
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
m_data[i] *= t;
return *this;
}
[[nodiscard]] constexpr VectorN operator+(VectorN const& other) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] + other.data()[i];
return result;
}
[[nodiscard]] constexpr VectorN operator-(VectorN const& other) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] - other.data()[i];
return result;
}
[[nodiscard]] constexpr VectorN operator*(VectorN const& other) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] * other.data()[i];
return result;
}
[[nodiscard]] constexpr VectorN operator-() const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = -m_data[i];
return result;
}
[[nodiscard]] constexpr VectorN operator/(VectorN const& other) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] / other.data()[i];
return result;
}
template<typename U>
[[nodiscard]] constexpr VectorN operator+(U f) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] + f;
return result;
}
template<typename U>
[[nodiscard]] constexpr VectorN operator-(U f) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] - f;
return result;
}
template<typename U>
[[nodiscard]] constexpr VectorN operator*(U f) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] * f;
return result;
}
template<typename U>
[[nodiscard]] constexpr VectorN operator/(U f) const
{
VectorN result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.m_data[i] = m_data[i] / f;
return result;
}
template<ConvertibleTo<T> U>
constexpr bool operator==(VectorN<N, U> const& other) const
{
UNROLL_LOOP
for (auto i = 0u; i < N; ++i) {
if (m_data[i] != static_cast<T>(other.m_data[i]))
return false;
}
return true;
}
[[nodiscard]] constexpr T dot(VectorN const& other) const
{
T result {};
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result += m_data[i] * other.data()[i];
return result;
}
[[nodiscard]] constexpr VectorN cross(VectorN const& other) const
requires(N == 3)
{
return VectorN(
y() * other.z() - z() * other.y(),
z() * other.x() - x() * other.z(),
x() * other.y() - y() * other.x());
}
[[nodiscard]] constexpr VectorN normalized() const
{
VectorN copy { *this };
copy.normalize();
return copy;
}
[[nodiscard]] constexpr VectorN clamped(T m, T x) const
{
VectorN copy { *this };
copy.clamp(m, x);
return copy;
}
constexpr void clamp(T min_value, T max_value)
{
UNROLL_LOOP
for (auto i = 0u; i < N; ++i) {
m_data[i] = max(min_value, m_data[i]);
m_data[i] = min(max_value, m_data[i]);
}
}
constexpr void normalize()
{
T const inv_length = 1 / length();
operator*=(inv_length);
}
template<typename O = T>
[[nodiscard]] constexpr O length() const
{
return AK::sqrt<O>(dot(*this));
}
[[nodiscard]] constexpr VectorN<2, T> xy() const
requires(N >= 3)
{
return VectorN<2, T>(x(), y());
}
[[nodiscard]] constexpr VectorN<3, T> xyz() const
requires(N >= 4)
{
return VectorN<3, T>(x(), y(), z());
}
[[nodiscard]] ByteString to_byte_string() const
{
if constexpr (N == 2)
return ByteString::formatted("[{},{}]", x(), y());
else if constexpr (N == 3)
return ByteString::formatted("[{},{},{}]", x(), y(), z());
else
return ByteString::formatted("[{},{},{},{}]", x(), y(), z(), w());
}
template<typename U>
[[nodiscard]] VectorN<N, U> to_type() const
{
VectorN<N, U> result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.data()[i] = static_cast<U>(m_data[i]);
return result;
}
template<typename U>
[[nodiscard]] VectorN<N, U> to_rounded() const
{
VectorN<N, U> result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result.data()[i] = round_to<U>(m_data[i]);
return result;
}
constexpr auto& data() { return m_data; }
constexpr auto const& data() const { return m_data; }
private:
Array<T, N> m_data;
};
}
namespace AK {
template<size_t N, typename T>
constexpr Gfx::VectorN<N, T> min(Gfx::VectorN<N, T> const& a, Gfx::VectorN<N, T> const& b)
{
Gfx::VectorN<N, T> result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result[i] = min(a[i], b[i]);
return result;
}
template<size_t N, typename T>
constexpr Gfx::VectorN<N, T> max(Gfx::VectorN<N, T> const& a, Gfx::VectorN<N, T> const& b)
{
Gfx::VectorN<N, T> result;
UNROLL_LOOP
for (auto i = 0u; i < N; ++i)
result[i] = max(a[i], b[i]);
return result;
}
}