ladybird/Libraries/LibGfx/DeprecatedPath.cpp
Pavel Shliak 8a07131229 LibGfx: Clean up #include directives
We actually include what we use where we use it.
This change aims to improve the speed of incremental builds.
2024-11-20 21:13:23 +01:00

448 lines
14 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <AK/StringBuilder.h>
#include <LibGfx/BoundingBox.h>
#include <LibGfx/DeprecatedPainter.h>
#include <LibGfx/DeprecatedPath.h>
namespace Gfx {
void DeprecatedPath::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
{
float sin_x_rotation;
float cos_x_rotation;
AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
float sin_angle;
float cos_angle;
AK::sincos(t, sin_angle, cos_angle);
point = FloatPoint {
center.x()
+ radii.width() * cos_x_rotation * cos_angle
- radii.height() * sin_x_rotation * sin_angle,
center.y()
+ radii.width() * sin_x_rotation * cos_angle
+ radii.height() * cos_x_rotation * sin_angle,
};
derivative = FloatPoint {
-radii.width() * cos_x_rotation * sin_angle
- radii.height() * sin_x_rotation * cos_angle,
-radii.width() * sin_x_rotation * sin_angle
+ radii.height() * cos_x_rotation * cos_angle,
};
};
auto approximate_arc_between = [&](float start_angle, float end_angle) {
auto t = AK::tan((end_angle - start_angle) / 2);
auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
FloatPoint p1, d1;
FloatPoint p2, d2;
arc_point_and_derivative(start_angle, p1, d1);
arc_point_and_derivative(end_angle, p2, d2);
auto q1 = p1 + d1.scaled(alpha, alpha);
auto q2 = p2 - d2.scaled(alpha, alpha);
cubic_bezier_curve_to(q1, q2, p2);
};
// FIXME: Come up with a more mathematically sound step size (using some error calculation).
auto step = theta_delta;
int step_count = 1;
while (fabs(step) > AK::Pi<float> / 4) {
step /= 2;
step_count *= 2;
}
float prev = theta;
float t = prev + step;
for (int i = 0; i < step_count; i++, prev = t, t += step)
approximate_arc_between(prev, t);
}
void DeprecatedPath::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
{
auto next_point = point;
double rx = radii.width();
double ry = radii.height();
double x_axis_rotation_s;
double x_axis_rotation_c;
AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
FloatPoint last_point = this->last_point();
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
append_segment<DeprecatedPathSegment::LineTo>(next_point);
return;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// POSSIBLY HACK: Handle the case where both points are the same.
auto same_endpoints = next_point == last_point;
if (same_endpoints) {
if (!large_arc) {
// Nothing is going to be drawn anyway.
return;
}
// Move the endpoint by a small amount to avoid division by zero.
next_point.translate_by(0.01f, 0.01f);
}
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = x1p * x1p;
double y1p_sq = y1p * y1p;
double rx_sq = rx * rx;
double ry_sq = ry * ry;
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = AK::sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = AK::sqrt(AK::max(0., numerator) / denominator);
}
if (large_arc == sweep)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (!sweep && theta_delta > 0.0) {
theta_delta -= 2 * AK::Pi<double>;
} else if (sweep && theta_delta < 0) {
theta_delta += 2 * AK::Pi<double>;
}
approximate_elliptical_arc_with_cubic_beziers(
{ cx, cy },
{ rx, ry },
x_axis_rotation,
theta_1,
theta_delta);
}
void DeprecatedPath::close()
{
// If there's no `moveto` starting this subpath assume the start is (0, 0).
FloatPoint first_point_in_subpath = { 0, 0 };
for (auto it = end(); it-- != begin();) {
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo) {
first_point_in_subpath = segment.point();
break;
}
}
if (first_point_in_subpath != last_point())
line_to(first_point_in_subpath);
}
void DeprecatedPath::close_all_subpaths()
{
auto it = begin();
// Note: Get the end outside the loop as closing subpaths will move the end.
auto end = this->end();
while (it < end) {
// If there's no `moveto` starting this subpath assume the start is (0, 0).
FloatPoint first_point_in_subpath = { 0, 0 };
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo) {
first_point_in_subpath = segment.point();
++it;
}
// Find the end of the current subpath.
FloatPoint cursor = first_point_in_subpath;
while (it < end) {
auto segment = *it;
if (segment.command() == DeprecatedPathSegment::MoveTo)
break;
cursor = segment.point();
++it;
}
// Close the subpath.
if (first_point_in_subpath != cursor) {
move_to(cursor);
line_to(first_point_in_subpath);
}
}
}
ByteString DeprecatedPath::to_byte_string() const
{
// Dumps this path as an SVG compatible string.
StringBuilder builder;
if (is_empty() || m_commands.first() != DeprecatedPathSegment::MoveTo)
builder.append("M 0,0"sv);
for (auto segment : *this) {
if (!builder.is_empty())
builder.append(' ');
switch (segment.command()) {
case DeprecatedPathSegment::MoveTo:
builder.append('M');
break;
case DeprecatedPathSegment::LineTo:
builder.append('L');
break;
case DeprecatedPathSegment::QuadraticBezierCurveTo:
builder.append('Q');
break;
case DeprecatedPathSegment::CubicBezierCurveTo:
builder.append('C');
break;
}
for (auto point : segment.points())
builder.appendff(" {},{}", point.x(), point.y());
}
return builder.to_byte_string();
}
void DeprecatedPath::segmentize_path()
{
Vector<FloatLine> segments;
FloatBoundingBox bounding_box;
auto add_line = [&](auto const& p0, auto const& p1) {
segments.append({ p0, p1 });
bounding_box.add_point(p1);
};
FloatPoint cursor { 0, 0 };
for (auto segment : *this) {
switch (segment.command()) {
case DeprecatedPathSegment::MoveTo:
bounding_box.add_point(segment.point());
break;
case DeprecatedPathSegment::LineTo: {
add_line(cursor, segment.point());
break;
}
case DeprecatedPathSegment::QuadraticBezierCurveTo: {
DeprecatedPainter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
break;
}
case DeprecatedPathSegment::CubicBezierCurveTo: {
DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
break;
}
}
cursor = segment.point();
}
m_split_lines = SplitLines { move(segments), bounding_box };
}
DeprecatedPath DeprecatedPath::copy_transformed(Gfx::AffineTransform const& transform) const
{
DeprecatedPath result;
result.m_commands = m_commands;
result.m_points.ensure_capacity(m_points.size());
for (auto point : m_points)
result.m_points.unchecked_append(transform.map(point));
return result;
}
template<typename T>
struct RoundTrip {
RoundTrip(ReadonlySpan<T> span)
: m_span(span)
{
}
size_t size() const
{
return m_span.size() * 2 - 1;
}
T const& operator[](size_t index) const
{
// Follow the path:
if (index < m_span.size())
return m_span[index];
// Then in reverse:
if (index < size())
return m_span[size() - index - 1];
// Then wrap around again:
return m_span[index - size() + 1];
}
private:
ReadonlySpan<T> m_span;
};
DeprecatedPath DeprecatedPath::stroke_to_fill(float thickness) const
{
// Note: This convolves a polygon with the path using the algorithm described
// in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
VERIFY(thickness > 0);
auto lines = split_lines();
if (lines.is_empty())
return DeprecatedPath {};
// Paths can be disconnected, which a pain to deal with, so split it up.
Vector<Vector<FloatPoint>> segments;
segments.append({ lines.first().a() });
for (auto& line : lines) {
if (line.a() == segments.last().last()) {
segments.last().append(line.b());
} else {
segments.append({ line.a(), line.b() });
}
}
constexpr auto flatness = 0.15f;
auto pen_vertex_count = 4;
if (thickness > flatness) {
pen_vertex_count = max(
static_cast<int>(ceilf(AK::Pi<float>
/ acosf(1 - (2 * flatness) / thickness))),
pen_vertex_count);
}
if (pen_vertex_count % 2 == 1)
pen_vertex_count += 1;
Vector<FloatPoint, 128> pen_vertices;
pen_vertices.ensure_capacity(pen_vertex_count);
// Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
// to be a circle (or an approximation of one), but other shapes are untested.
float theta = 0;
float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
for (int i = 0; i < pen_vertex_count; i++) {
float sin_theta;
float cos_theta;
AK::sincos(theta, sin_theta, cos_theta);
pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
theta -= theta_delta;
}
auto wrapping_index = [](auto& vertices, auto index) {
return vertices[(index + vertices.size()) % vertices.size()];
};
auto angle_between = [](auto p1, auto p2) {
auto delta = p2 - p1;
return atan2f(delta.y(), delta.x());
};
struct ActiveRange {
float start;
float end;
bool in_range(float angle) const
{
// Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
return ((angle <= start && angle >= end)
|| (start < end && angle <= start)
|| (start < end && angle >= end));
}
};
Vector<ActiveRange, 128> active_ranges;
active_ranges.ensure_capacity(pen_vertices.size());
for (auto i = 0; i < pen_vertex_count; i++) {
active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
}
auto clockwise = [](float current_angle, float target_angle) {
if (target_angle < 0)
target_angle += AK::Pi<float> * 2;
if (current_angle < 0)
current_angle += AK::Pi<float> * 2;
if (target_angle < current_angle)
target_angle += AK::Pi<float> * 2;
return (target_angle - current_angle) <= AK::Pi<float>;
};
DeprecatedPath convolution;
for (auto& segment : segments) {
RoundTrip<FloatPoint> shape { segment };
bool first = true;
auto add_vertex = [&](auto v) {
if (first) {
convolution.move_to(v);
first = false;
} else {
convolution.line_to(v);
}
};
auto shape_idx = 0u;
auto slope = [&] {
return angle_between(shape[shape_idx], shape[shape_idx + 1]);
};
auto start_slope = slope();
// Note: At least one range must be active.
auto active = *active_ranges.find_first_index_if([&](auto& range) {
return range.in_range(start_slope);
});
while (shape_idx < shape.size()) {
add_vertex(shape[shape_idx] + pen_vertices[active]);
auto slope_now = slope();
auto range = active_ranges[active];
if (range.in_range(slope_now)) {
shape_idx++;
} else {
if (clockwise(slope_now, range.end)) {
if (active == static_cast<size_t>(pen_vertex_count - 1))
active = 0;
else
active++;
} else {
if (active == 0)
active = pen_vertex_count - 1;
else
active--;
}
}
}
}
return convolution;
}
}