ladybird/Libraries/LibCrypto/PK/RSA.cpp

390 lines
13 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Random.h>
#include <AK/ScopeGuard.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/PK/RSA.h>
namespace Crypto::PK {
static constexpr Array<int, 7> pkcs8_rsa_key_oid { 1, 2, 840, 113549, 1, 1, 1 };
RSA::KeyPairType RSA::parse_rsa_key(ReadonlyBytes der)
{
// we are going to assign to at least one of these
KeyPairType keypair;
ASN1::Decoder decoder(der);
// There are four possible (supported) formats:
// PKCS#1 private key
// PKCS#1 public key
// PKCS#8 private key
// PKCS#8 public key
// They're all a single sequence, so let's check that first
{
auto result = decoder.peek();
if (result.is_error()) {
// Bad data.
dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", result.error());
return keypair;
}
auto tag = result.value();
if (tag.kind != ASN1::Kind::Sequence) {
dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: Expected a Sequence but got {}", ASN1::kind_name(tag.kind));
return keypair;
}
}
// Then enter the sequence
{
auto error = decoder.enter();
if (error.is_error()) {
// Something was weird with the input.
dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", error.error());
return keypair;
}
}
bool has_read_error = false;
auto const check_if_pkcs8_rsa_key = [&] {
// see if it's a sequence:
auto tag_result = decoder.peek();
if (tag_result.is_error()) {
// Decode error :shrug:
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", tag_result.error());
return false;
}
auto tag = tag_result.value();
if (tag.kind != ASN1::Kind::Sequence) {
// We don't know what this is, but it sure isn't a PKCS#8 key.
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: Expected a Sequence but got {}", ASN1::kind_name(tag.kind));
return false;
}
// It's a sequence, now let's see if it's actually an RSA key.
auto error = decoder.enter();
if (error.is_error()) {
// Shenanigans!
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", error.error());
return false;
}
ScopeGuard leave { [&] {
auto error = decoder.leave();
if (error.is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", error.error());
has_read_error = true;
}
} };
// Now let's read the OID.
auto oid_result = decoder.read<Vector<int>>();
if (oid_result.is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", oid_result.error());
return false;
}
auto oid = oid_result.release_value();
// Now let's check that the OID matches "RSA key"
if (oid != pkcs8_rsa_key_oid) {
// Oh well. not an RSA key at all.
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: Not an RSA key");
return false;
}
return true;
};
auto integer_result = decoder.read<UnsignedBigInteger>();
if (!integer_result.is_error()) {
auto first_integer = integer_result.release_value();
// It's either a PKCS#1 key, or a PKCS#8 private key.
// Check for the PKCS#8 private key right away.
if (check_if_pkcs8_rsa_key()) {
if (has_read_error)
return keypair;
// Now read the private key, which is actually an octet string containing the PKCS#1 encoded private key.
auto data_result = decoder.read<StringView>();
if (data_result.is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 private key parse failed: {}", data_result.error());
return keypair;
}
return parse_rsa_key(data_result.value().bytes());
}
if (has_read_error)
return keypair;
// It's not a PKCS#8 key, so it's a PKCS#1 key (or something we don't support)
// if the first integer is zero or one, it's a private key.
if (first_integer == 0) {
// This is a private key, parse the rest.
auto modulus_result = decoder.read<UnsignedBigInteger>();
auto public_exponent_result = decoder.read<UnsignedBigInteger>();
auto private_exponent_result = decoder.read<UnsignedBigInteger>();
auto prime1_result = decoder.read<UnsignedBigInteger>();
auto prime2_result = decoder.read<UnsignedBigInteger>();
auto exponent1_result = decoder.read<UnsignedBigInteger>();
auto exponent2_result = decoder.read<UnsignedBigInteger>();
auto coefficient_result = decoder.read<UnsignedBigInteger>();
Array results = { &modulus_result, &public_exponent_result, &private_exponent_result, &prime1_result, &prime2_result, &exponent1_result, &exponent2_result, &coefficient_result };
for (auto& result : results) {
if (result->is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: {}", result->error());
return keypair;
}
}
keypair.private_key = {
modulus_result.value(),
private_exponent_result.release_value(),
public_exponent_result.value(),
prime1_result.release_value(),
prime2_result.release_value(),
exponent1_result.release_value(),
exponent2_result.release_value(),
coefficient_result.release_value(),
};
keypair.public_key = { modulus_result.release_value(), public_exponent_result.release_value() };
return keypair;
}
if (first_integer == 1) {
// This is a multi-prime key, we don't support that.
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: Multi-prime key not supported");
return keypair;
}
auto&& modulus = move(first_integer);
// Try reading a public key, `first_integer` is the modulus.
auto public_exponent_result = decoder.read<UnsignedBigInteger>();
if (public_exponent_result.is_error()) {
// Bad public key.
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 public key parse failed: {}", public_exponent_result.error());
return keypair;
}
auto public_exponent = public_exponent_result.release_value();
keypair.public_key.set(move(modulus), move(public_exponent));
return keypair;
}
// It wasn't a PKCS#1 key, let's try our luck with PKCS#8.
if (!check_if_pkcs8_rsa_key())
return keypair;
if (has_read_error)
return keypair;
// Now we have a bit string, which contains the PKCS#1 encoded public key.
auto data_result = decoder.read<BitmapView>();
if (data_result.is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", data_result.error());
return keypair;
}
// Now just read it as a PKCS#1 DER.
auto data = data_result.release_value();
// FIXME: This is pretty awkward, maybe just generate a zero'd out ByteBuffer from the parser instead?
auto padded_data_result = ByteBuffer::create_zeroed(data.size_in_bytes());
if (padded_data_result.is_error()) {
dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 key parse failed: Not enough memory");
return keypair;
}
auto padded_data = padded_data_result.release_value();
padded_data.overwrite(0, data.data(), data.size_in_bytes());
return parse_rsa_key(padded_data.bytes());
}
void RSA::encrypt(ReadonlyBytes in, Bytes& out)
{
dbgln_if(CRYPTO_DEBUG, "in size: {}", in.size());
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
if (!(in_integer < m_public_key.modulus())) {
dbgln("value too large for key");
out = {};
return;
}
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
auto outsize = out.size();
if (size != outsize) {
dbgln("POSSIBLE RSA BUG!!! Size mismatch: {} requested but {} bytes generated", outsize, size);
out = out.slice(outsize - size, size);
}
}
void RSA::decrypt(ReadonlyBytes in, Bytes& out)
{
// FIXME: Actually use the private key properly
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
auto align = m_private_key.length();
auto aligned_size = (size + align - 1) / align * align;
for (auto i = size; i < aligned_size; ++i)
out[out.size() - i - 1] = 0; // zero the non-aligned values
out = out.slice(out.size() - aligned_size, aligned_size);
}
void RSA::sign(ReadonlyBytes in, Bytes& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::verify(ReadonlyBytes in, Bytes& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::import_private_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer buffer;
if (pem) {
buffer = decode_pem(bytes);
bytes = buffer;
}
auto key = parse_rsa_key(bytes);
if (!key.private_key.length()) {
dbgln("We expected to see a private key, but we found none");
VERIFY_NOT_REACHED();
}
m_private_key = key.private_key;
}
void RSA::import_public_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer buffer;
if (pem) {
buffer = decode_pem(bytes);
bytes = buffer;
}
auto key = parse_rsa_key(bytes);
if (!key.public_key.length()) {
dbgln("We expected to see a public key, but we found none");
VERIFY_NOT_REACHED();
}
m_public_key = key.public_key;
}
void RSA_PKCS1_EME::encrypt(ReadonlyBytes in, Bytes& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
dbgln_if(CRYPTO_DEBUG, "key size: {}", mod_len);
if (in.size() > mod_len - 11) {
dbgln("message too long :(");
out = out.trim(0);
return;
}
if (out.size() < mod_len) {
dbgln("output buffer too small");
return;
}
auto ps_length = mod_len - in.size() - 3;
Vector<u8, 8096> ps;
ps.resize(ps_length);
fill_with_random(ps);
// since fill_with_random can create zeros (shocking!)
// we have to go through and un-zero the zeros
for (size_t i = 0; i < ps_length; ++i) {
while (!ps[i])
ps[i] = get_random<u8>();
}
u8 paddings[] { 0x00, 0x02 };
out.overwrite(0, paddings, 2);
out.overwrite(2, ps.data(), ps_length);
out.overwrite(2 + ps_length, paddings, 1);
out.overwrite(3 + ps_length, in.data(), in.size());
out = out.trim(3 + ps_length + in.size()); // should be a single block
dbgln_if(CRYPTO_DEBUG, "padded output size: {} buffer size: {}", 3 + ps_length + in.size(), out.size());
RSA::encrypt(out, out);
}
void RSA_PKCS1_EME::decrypt(ReadonlyBytes in, Bytes& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
if (in.size() != mod_len) {
dbgln("decryption error: wrong amount of data: {}", in.size());
out = out.trim(0);
return;
}
RSA::decrypt(in, out);
if (out.size() < RSA::output_size()) {
dbgln("decryption error: not enough data after decryption: {}", out.size());
out = out.trim(0);
return;
}
if (out[0] != 0x00) {
dbgln("invalid padding byte 0 : {}", out[0]);
return;
}
if (out[1] != 0x02) {
dbgln("invalid padding byte 1 : {}", out[1]);
return;
}
size_t offset = 2;
while (offset < out.size() && out[offset])
++offset;
if (offset == out.size()) {
dbgln("garbage data, no zero to split padding");
return;
}
++offset;
if (offset - 3 < 8) {
dbgln("PS too small");
return;
}
out = out.slice(offset, out.size() - offset);
}
void RSA_PKCS1_EME::sign(ReadonlyBytes, Bytes&)
{
dbgln("FIXME: RSA_PKCS_EME::sign");
}
void RSA_PKCS1_EME::verify(ReadonlyBytes, Bytes&)
{
dbgln("FIXME: RSA_PKCS_EME::verify");
}
}