mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-21 23:20:20 +00:00
694 lines
25 KiB
C++
694 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2023, Michiel Visser <opensource@webmichiel.nl>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/ByteBuffer.h>
|
|
#include <AK/Endian.h>
|
|
#include <AK/MemoryStream.h>
|
|
#include <AK/Random.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/StringView.h>
|
|
#include <AK/UFixedBigInt.h>
|
|
#include <AK/UFixedBigIntDivision.h>
|
|
#include <LibCrypto/ASN1/DER.h>
|
|
#include <LibCrypto/Curves/EllipticCurve.h>
|
|
|
|
namespace Crypto::Curves {
|
|
|
|
struct SECPxxxr1CurveParameters {
|
|
StringView prime;
|
|
StringView a;
|
|
StringView b;
|
|
StringView order;
|
|
StringView generator_point;
|
|
};
|
|
|
|
template<size_t bit_size, SECPxxxr1CurveParameters const& CURVE_PARAMETERS>
|
|
class SECPxxxr1 : public EllipticCurve {
|
|
private:
|
|
using StorageType = AK::UFixedBigInt<bit_size>;
|
|
using StorageTypeX2 = AK::UFixedBigInt<bit_size * 2>;
|
|
|
|
struct JacobianPoint {
|
|
StorageType x;
|
|
StorageType y;
|
|
StorageType z;
|
|
};
|
|
|
|
// Curve parameters
|
|
static constexpr size_t KEY_BIT_SIZE = bit_size;
|
|
static constexpr size_t KEY_BYTE_SIZE = KEY_BIT_SIZE / 8;
|
|
static constexpr size_t POINT_BYTE_SIZE = 1 + 2 * KEY_BYTE_SIZE;
|
|
|
|
static constexpr StorageType make_unsigned_fixed_big_int_from_string(StringView str)
|
|
{
|
|
StorageType result { 0 };
|
|
for (auto c : str) {
|
|
if (c == '_')
|
|
continue;
|
|
|
|
result <<= 4;
|
|
result |= parse_ascii_hex_digit(c);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static constexpr StorageType PRIME = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.prime);
|
|
static constexpr StorageType A = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.a);
|
|
static constexpr StorageType B = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.b);
|
|
static constexpr StorageType ORDER = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.order);
|
|
|
|
static constexpr Array<u8, POINT_BYTE_SIZE> make_generator_point_bytes(StringView generator_point)
|
|
{
|
|
Array<u8, POINT_BYTE_SIZE> buf_array { 0 };
|
|
|
|
auto it = generator_point.begin();
|
|
for (size_t i = 0; i < POINT_BYTE_SIZE; i++) {
|
|
if (it == CURVE_PARAMETERS.generator_point.end())
|
|
break;
|
|
|
|
while (*it == '_') {
|
|
it++;
|
|
}
|
|
|
|
buf_array[i] = parse_ascii_hex_digit(*it) * 16;
|
|
it++;
|
|
if (it == CURVE_PARAMETERS.generator_point.end())
|
|
break;
|
|
|
|
buf_array[i] += parse_ascii_hex_digit(*it);
|
|
it++;
|
|
}
|
|
|
|
return buf_array;
|
|
}
|
|
|
|
static constexpr Array<u8, POINT_BYTE_SIZE> GENERATOR_POINT = make_generator_point_bytes(CURVE_PARAMETERS.generator_point);
|
|
|
|
// Check that the generator point starts with 0x04
|
|
static_assert(GENERATOR_POINT[0] == 0x04);
|
|
|
|
static constexpr StorageType calculate_modular_inverse_mod_r(StorageType value)
|
|
{
|
|
// Calculate the modular multiplicative inverse of value mod 2^bit_size using the extended euclidean algorithm
|
|
using StorageTypeP1 = AK::UFixedBigInt<bit_size + 1>;
|
|
|
|
StorageTypeP1 old_r = value;
|
|
StorageTypeP1 r = static_cast<StorageTypeP1>(1u) << KEY_BIT_SIZE;
|
|
StorageTypeP1 old_s = 1u;
|
|
StorageTypeP1 s = 0u;
|
|
|
|
while (!r.is_zero_constant_time()) {
|
|
StorageTypeP1 r_save = r;
|
|
StorageTypeP1 quotient = old_r.div_mod(r, r);
|
|
old_r = r_save;
|
|
|
|
StorageTypeP1 s_save = s;
|
|
s = old_s - quotient * s;
|
|
old_s = s_save;
|
|
}
|
|
|
|
return static_cast<StorageType>(old_s);
|
|
}
|
|
|
|
static constexpr StorageType calculate_r2_mod(StorageType modulus)
|
|
{
|
|
// Calculate the value of R^2 mod modulus, where R = 2^bit_size
|
|
using StorageTypeX2P1 = AK::UFixedBigInt<bit_size * 2 + 1>;
|
|
|
|
StorageTypeX2P1 r2 = static_cast<StorageTypeX2P1>(1u) << (2 * KEY_BIT_SIZE);
|
|
return r2 % modulus;
|
|
}
|
|
|
|
// Verify that A = -3 mod p, which is required for some optimizations
|
|
static_assert(A == PRIME - 3);
|
|
|
|
// Precomputed helper values for reduction and Montgomery multiplication
|
|
static constexpr StorageType REDUCE_PRIME = StorageType { 0 } - PRIME;
|
|
static constexpr StorageType REDUCE_ORDER = StorageType { 0 } - ORDER;
|
|
static constexpr StorageType PRIME_INVERSE_MOD_R = StorageType { 0 } - calculate_modular_inverse_mod_r(PRIME);
|
|
static constexpr StorageType ORDER_INVERSE_MOD_R = StorageType { 0 } - calculate_modular_inverse_mod_r(ORDER);
|
|
static constexpr StorageType R2_MOD_PRIME = calculate_r2_mod(PRIME);
|
|
static constexpr StorageType R2_MOD_ORDER = calculate_r2_mod(ORDER);
|
|
|
|
public:
|
|
size_t key_size() override { return POINT_BYTE_SIZE; }
|
|
|
|
ErrorOr<ByteBuffer> generate_private_key() override
|
|
{
|
|
auto buffer = TRY(ByteBuffer::create_uninitialized(KEY_BYTE_SIZE));
|
|
fill_with_random(buffer);
|
|
return buffer;
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> generate_public_key(ReadonlyBytes a) override
|
|
{
|
|
return compute_coordinate(a, GENERATOR_POINT);
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes) override
|
|
{
|
|
AK::FixedMemoryStream scalar_stream { scalar_bytes };
|
|
AK::FixedMemoryStream point_stream { point_bytes };
|
|
|
|
StorageType scalar = TRY(scalar_stream.read_value<BigEndian<StorageType>>());
|
|
JacobianPoint point = TRY(read_uncompressed_point(point_stream));
|
|
JacobianPoint result = TRY(compute_coordinate_internal(scalar, point));
|
|
|
|
// Export the values into an output buffer
|
|
auto buf = TRY(ByteBuffer::create_uninitialized(POINT_BYTE_SIZE));
|
|
AK::FixedMemoryStream buf_stream { buf.bytes() };
|
|
TRY(buf_stream.write_value<u8>(0x04));
|
|
TRY(buf_stream.write_value<BigEndian<StorageType>>(result.x));
|
|
TRY(buf_stream.write_value<BigEndian<StorageType>>(result.y));
|
|
return buf;
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> derive_premaster_key(ReadonlyBytes shared_point) override
|
|
{
|
|
VERIFY(shared_point.size() == POINT_BYTE_SIZE);
|
|
VERIFY(shared_point[0] == 0x04);
|
|
|
|
ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(KEY_BYTE_SIZE));
|
|
premaster_key.overwrite(0, shared_point.data() + 1, KEY_BYTE_SIZE);
|
|
return premaster_key;
|
|
}
|
|
|
|
ErrorOr<bool> verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature)
|
|
{
|
|
Crypto::ASN1::Decoder asn1_decoder(signature);
|
|
TRY(asn1_decoder.enter());
|
|
|
|
auto r_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
|
|
auto s_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
|
|
|
|
size_t expected_word_count = KEY_BIT_SIZE / 32;
|
|
if (r_bigint.length() < expected_word_count || s_bigint.length() < expected_word_count) {
|
|
return false;
|
|
}
|
|
|
|
StorageType r = 0u;
|
|
StorageType s = 0u;
|
|
for (size_t i = 0; i < (KEY_BIT_SIZE / 32); i++) {
|
|
StorageType rr = r_bigint.words()[i];
|
|
StorageType ss = s_bigint.words()[i];
|
|
r |= (rr << (i * 32));
|
|
s |= (ss << (i * 32));
|
|
}
|
|
|
|
// z is the hash
|
|
StorageType z = 0u;
|
|
for (uint8_t byte : hash) {
|
|
z <<= 8;
|
|
z |= byte;
|
|
}
|
|
|
|
AK::FixedMemoryStream pubkey_stream { pubkey };
|
|
JacobianPoint pubkey_point = TRY(read_uncompressed_point(pubkey_stream));
|
|
|
|
StorageType r_mo = to_montgomery_order(r);
|
|
StorageType s_mo = to_montgomery_order(s);
|
|
StorageType z_mo = to_montgomery_order(z);
|
|
|
|
StorageType s_inv = modular_inverse_order(s_mo);
|
|
|
|
StorageType u1 = modular_multiply_order(z_mo, s_inv);
|
|
StorageType u2 = modular_multiply_order(r_mo, s_inv);
|
|
|
|
u1 = from_montgomery_order(u1);
|
|
u2 = from_montgomery_order(u2);
|
|
|
|
JacobianPoint point1 = TRY(generate_public_key_internal(u1));
|
|
JacobianPoint point2 = TRY(compute_coordinate_internal(u2, pubkey_point));
|
|
|
|
// Convert the input point into Montgomery form
|
|
point1.x = to_montgomery(point1.x);
|
|
point1.y = to_montgomery(point1.y);
|
|
point1.z = to_montgomery(point1.z);
|
|
|
|
VERIFY(is_point_on_curve(point1));
|
|
|
|
// Convert the input point into Montgomery form
|
|
point2.x = to_montgomery(point2.x);
|
|
point2.y = to_montgomery(point2.y);
|
|
point2.z = to_montgomery(point2.z);
|
|
|
|
VERIFY(is_point_on_curve(point2));
|
|
|
|
JacobianPoint result = point_add(point1, point2);
|
|
|
|
// Convert from Jacobian coordinates back to Affine coordinates
|
|
convert_jacobian_to_affine(result);
|
|
|
|
// Make sure the resulting point is on the curve
|
|
VERIFY(is_point_on_curve(result));
|
|
|
|
// Convert the result back from Montgomery form
|
|
result.x = from_montgomery(result.x);
|
|
result.y = from_montgomery(result.y);
|
|
// Final modular reduction on the coordinates
|
|
result.x = modular_reduce(result.x);
|
|
result.y = modular_reduce(result.y);
|
|
|
|
return r.is_equal_to_constant_time(result.x);
|
|
}
|
|
|
|
private:
|
|
ErrorOr<JacobianPoint> generate_public_key_internal(StorageType a)
|
|
{
|
|
AK::FixedMemoryStream generator_point_stream { GENERATOR_POINT };
|
|
JacobianPoint point = TRY(read_uncompressed_point(generator_point_stream));
|
|
return compute_coordinate_internal(a, point);
|
|
}
|
|
|
|
ErrorOr<JacobianPoint> compute_coordinate_internal(StorageType scalar, JacobianPoint point)
|
|
{
|
|
// FIXME: This will slightly bias the distribution of client secrets
|
|
scalar = modular_reduce_order(scalar);
|
|
if (scalar.is_zero_constant_time())
|
|
return Error::from_string_literal("SECPxxxr1: scalar is zero");
|
|
|
|
// Convert the input point into Montgomery form
|
|
point.x = to_montgomery(point.x);
|
|
point.y = to_montgomery(point.y);
|
|
point.z = to_montgomery(point.z);
|
|
|
|
// Check that the point is on the curve
|
|
if (!is_point_on_curve(point))
|
|
return Error::from_string_literal("SECPxxxr1: point is not on the curve");
|
|
|
|
JacobianPoint result { 0, 0, 0 };
|
|
JacobianPoint temp_result { 0, 0, 0 };
|
|
|
|
// Calculate the scalar times point multiplication in constant time
|
|
for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
|
|
temp_result = point_add(result, point);
|
|
|
|
auto condition = (scalar & 1u) == 1u;
|
|
result.x = select(result.x, temp_result.x, condition);
|
|
result.y = select(result.y, temp_result.y, condition);
|
|
result.z = select(result.z, temp_result.z, condition);
|
|
|
|
point = point_double(point);
|
|
scalar >>= 1u;
|
|
}
|
|
|
|
// Convert from Jacobian coordinates back to Affine coordinates
|
|
convert_jacobian_to_affine(result);
|
|
|
|
// Make sure the resulting point is on the curve
|
|
VERIFY(is_point_on_curve(result));
|
|
|
|
// Convert the result back from Montgomery form
|
|
result.x = from_montgomery(result.x);
|
|
result.y = from_montgomery(result.y);
|
|
result.z = from_montgomery(result.z);
|
|
// Final modular reduction on the coordinates
|
|
result.x = modular_reduce(result.x);
|
|
result.y = modular_reduce(result.y);
|
|
result.z = modular_reduce(result.z);
|
|
|
|
return result;
|
|
}
|
|
|
|
static ErrorOr<JacobianPoint> read_uncompressed_point(Stream& stream)
|
|
{
|
|
// Make sure the point is uncompressed
|
|
if (TRY(stream.read_value<u8>()) != 0x04)
|
|
return Error::from_string_literal("SECPxxxr1: point is not uncompressed format");
|
|
|
|
JacobianPoint point {
|
|
TRY(stream.read_value<BigEndian<StorageType>>()),
|
|
TRY(stream.read_value<BigEndian<StorageType>>()),
|
|
1u,
|
|
};
|
|
|
|
return point;
|
|
}
|
|
|
|
constexpr StorageType select(StorageType const& left, StorageType const& right, bool condition)
|
|
{
|
|
// If condition = 0 return left else right
|
|
StorageType mask = static_cast<StorageType>(condition) - 1;
|
|
AK::taint_for_optimizer(mask);
|
|
|
|
return (left & mask) | (right & ~mask);
|
|
}
|
|
|
|
constexpr StorageType modular_reduce(StorageType const& value)
|
|
{
|
|
// Add -prime % 2^KEY_BIT_SIZE
|
|
bool carry = false;
|
|
StorageType other = value.addc(REDUCE_PRIME, carry);
|
|
|
|
// Check for overflow
|
|
return select(value, other, carry);
|
|
}
|
|
|
|
constexpr StorageType modular_reduce_order(StorageType const& value)
|
|
{
|
|
// Add -order % 2^KEY_BIT_SIZE
|
|
bool carry = false;
|
|
StorageType other = value.addc(REDUCE_ORDER, carry);
|
|
|
|
// Check for overflow
|
|
return select(value, other, carry);
|
|
}
|
|
|
|
constexpr StorageType modular_add(StorageType const& left, StorageType const& right, bool carry_in = false)
|
|
{
|
|
bool carry = carry_in;
|
|
StorageType output = left.addc(right, carry);
|
|
|
|
// If there is a carry, subtract p by adding 2^KEY_BIT_SIZE - p
|
|
StorageType addend = select(0u, REDUCE_PRIME, carry);
|
|
carry = false;
|
|
output = output.addc(addend, carry);
|
|
|
|
// If there is still a carry, subtract p by adding 2^KEY_BIT_SIZE - p
|
|
addend = select(0u, REDUCE_PRIME, carry);
|
|
return output + addend;
|
|
}
|
|
|
|
constexpr StorageType modular_sub(StorageType const& left, StorageType const& right)
|
|
{
|
|
bool borrow = false;
|
|
StorageType output = left.subc(right, borrow);
|
|
|
|
// If there is a borrow, add p by subtracting 2^KEY_BIT_SIZE - p
|
|
StorageType sub = select(0u, REDUCE_PRIME, borrow);
|
|
borrow = false;
|
|
output = output.subc(sub, borrow);
|
|
|
|
// If there is still a borrow, add p by subtracting 2^KEY_BIT_SIZE - p
|
|
sub = select(0u, REDUCE_PRIME, borrow);
|
|
return output - sub;
|
|
}
|
|
|
|
constexpr StorageType modular_multiply(StorageType const& left, StorageType const& right)
|
|
{
|
|
// Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
|
|
// This requires that the inputs to this function are in Montgomery form.
|
|
|
|
// T = left * right
|
|
StorageTypeX2 mult = left.wide_multiply(right);
|
|
StorageType mult_mod_r = static_cast<StorageType>(mult);
|
|
|
|
// m = ((T mod R) * curve_p')
|
|
StorageType m = mult_mod_r * PRIME_INVERSE_MOD_R;
|
|
|
|
// mp = (m mod R) * curve_p
|
|
StorageTypeX2 mp = m.wide_multiply(PRIME);
|
|
|
|
// t = (T + mp)
|
|
bool carry = false;
|
|
mult_mod_r.addc(static_cast<StorageType>(mp), carry);
|
|
|
|
// output = t / R
|
|
StorageType mult_high = static_cast<StorageType>(mult >> KEY_BIT_SIZE);
|
|
StorageType mp_high = static_cast<StorageType>(mp >> KEY_BIT_SIZE);
|
|
return modular_add(mult_high, mp_high, carry);
|
|
}
|
|
|
|
constexpr StorageType modular_square(StorageType const& value)
|
|
{
|
|
return modular_multiply(value, value);
|
|
}
|
|
|
|
constexpr StorageType to_montgomery(StorageType const& value)
|
|
{
|
|
return modular_multiply(value, R2_MOD_PRIME);
|
|
}
|
|
|
|
constexpr StorageType from_montgomery(StorageType const& value)
|
|
{
|
|
return modular_multiply(value, 1u);
|
|
}
|
|
|
|
constexpr StorageType modular_inverse(StorageType const& value)
|
|
{
|
|
// Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
|
|
// Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
|
|
StorageType base = value;
|
|
StorageType result = to_montgomery(1u);
|
|
StorageType prime_minus_2 = PRIME - 2u;
|
|
|
|
for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
|
|
if ((prime_minus_2 & 1u) == 1u) {
|
|
result = modular_multiply(result, base);
|
|
}
|
|
base = modular_square(base);
|
|
prime_minus_2 >>= 1u;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
constexpr StorageType modular_add_order(StorageType const& left, StorageType const& right, bool carry_in = false)
|
|
{
|
|
bool carry = carry_in;
|
|
StorageType output = left.addc(right, carry);
|
|
|
|
// If there is a carry, subtract n by adding 2^KEY_BIT_SIZE - n
|
|
StorageType addend = select(0u, REDUCE_ORDER, carry);
|
|
carry = false;
|
|
output = output.addc(addend, carry);
|
|
|
|
// If there is still a carry, subtract n by adding 2^KEY_BIT_SIZE - n
|
|
addend = select(0u, REDUCE_ORDER, carry);
|
|
return output + addend;
|
|
}
|
|
|
|
constexpr StorageType modular_multiply_order(StorageType const& left, StorageType const& right)
|
|
{
|
|
// Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
|
|
// This requires that the inputs to this function are in Montgomery form.
|
|
|
|
// T = left * right
|
|
StorageTypeX2 mult = left.wide_multiply(right);
|
|
StorageType mult_mod_r = static_cast<StorageType>(mult);
|
|
|
|
// m = ((T mod R) * curve_n')
|
|
StorageType m = mult_mod_r * ORDER_INVERSE_MOD_R;
|
|
|
|
// mp = (m mod R) * curve_n
|
|
StorageTypeX2 mp = m.wide_multiply(ORDER);
|
|
|
|
// t = (T + mp)
|
|
bool carry = false;
|
|
mult_mod_r.addc(static_cast<StorageType>(mp), carry);
|
|
|
|
// output = t / R
|
|
StorageType mult_high = static_cast<StorageType>(mult >> KEY_BIT_SIZE);
|
|
StorageType mp_high = static_cast<StorageType>(mp >> KEY_BIT_SIZE);
|
|
return modular_add_order(mult_high, mp_high, carry);
|
|
}
|
|
|
|
constexpr StorageType modular_square_order(StorageType const& value)
|
|
{
|
|
return modular_multiply_order(value, value);
|
|
}
|
|
|
|
constexpr StorageType to_montgomery_order(StorageType const& value)
|
|
{
|
|
return modular_multiply_order(value, R2_MOD_ORDER);
|
|
}
|
|
|
|
constexpr StorageType from_montgomery_order(StorageType const& value)
|
|
{
|
|
return modular_multiply_order(value, 1u);
|
|
}
|
|
|
|
constexpr StorageType modular_inverse_order(StorageType const& value)
|
|
{
|
|
// Modular inverse modulo the curve order can be computed using Fermat's little theorem: a^(n-2) mod n = a^-1 mod n.
|
|
// Calculating a^(n-2) mod n can be done using the square-and-multiply exponentiation method, as n-2 is constant.
|
|
StorageType base = value;
|
|
StorageType result = to_montgomery_order(1u);
|
|
StorageType order_minus_2 = ORDER - 2u;
|
|
|
|
for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
|
|
if ((order_minus_2 & 1u) == 1u) {
|
|
result = modular_multiply_order(result, base);
|
|
}
|
|
base = modular_square_order(base);
|
|
order_minus_2 >>= 1u;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
JacobianPoint point_double(JacobianPoint const& point)
|
|
{
|
|
// Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
|
|
|
|
// if (Y == 0)
|
|
// return POINT_AT_INFINITY
|
|
if (point.y.is_zero_constant_time()) {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
StorageType temp;
|
|
|
|
// Y2 = Y^2
|
|
StorageType y2 = modular_square(point.y);
|
|
|
|
// S = 4*X*Y2
|
|
StorageType s = modular_multiply(point.x, y2);
|
|
s = modular_add(s, s);
|
|
s = modular_add(s, s);
|
|
|
|
// M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
|
|
// This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
|
|
// This simplification only works because a = -3 mod p
|
|
temp = modular_square(point.z);
|
|
StorageType m = modular_add(point.x, temp);
|
|
temp = modular_sub(point.x, temp);
|
|
m = modular_multiply(m, temp);
|
|
temp = modular_add(m, m);
|
|
m = modular_add(m, temp);
|
|
|
|
// X' = M^2 - 2*S
|
|
StorageType xp = modular_square(m);
|
|
xp = modular_sub(xp, s);
|
|
xp = modular_sub(xp, s);
|
|
|
|
// Y' = M*(S - X') - 8*Y2^2
|
|
StorageType yp = modular_sub(s, xp);
|
|
yp = modular_multiply(yp, m);
|
|
temp = modular_square(y2);
|
|
temp = modular_add(temp, temp);
|
|
temp = modular_add(temp, temp);
|
|
temp = modular_add(temp, temp);
|
|
yp = modular_sub(yp, temp);
|
|
|
|
// Z' = 2*Y*Z
|
|
StorageType zp = modular_multiply(point.y, point.z);
|
|
zp = modular_add(zp, zp);
|
|
|
|
// return (X', Y', Z')
|
|
return JacobianPoint { xp, yp, zp };
|
|
}
|
|
|
|
JacobianPoint point_add(JacobianPoint const& point_a, JacobianPoint const& point_b)
|
|
{
|
|
// Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
|
|
if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
|
|
return point_b;
|
|
}
|
|
|
|
StorageType temp;
|
|
|
|
temp = modular_square(point_b.z);
|
|
// U1 = X1*Z2^2
|
|
StorageType u1 = modular_multiply(point_a.x, temp);
|
|
// S1 = Y1*Z2^3
|
|
StorageType s1 = modular_multiply(point_a.y, temp);
|
|
s1 = modular_multiply(s1, point_b.z);
|
|
|
|
temp = modular_square(point_a.z);
|
|
// U2 = X2*Z1^2
|
|
StorageType u2 = modular_multiply(point_b.x, temp);
|
|
// S2 = Y2*Z1^3
|
|
StorageType s2 = modular_multiply(point_b.y, temp);
|
|
s2 = modular_multiply(s2, point_a.z);
|
|
|
|
// if (U1 == U2)
|
|
// if (S1 != S2)
|
|
// return POINT_AT_INFINITY
|
|
// else
|
|
// return POINT_DOUBLE(X1, Y1, Z1)
|
|
if (u1.is_equal_to_constant_time(u2)) {
|
|
if (s1.is_equal_to_constant_time(s2)) {
|
|
return point_double(point_a);
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
// H = U2 - U1
|
|
StorageType h = modular_sub(u2, u1);
|
|
StorageType h2 = modular_square(h);
|
|
StorageType h3 = modular_multiply(h2, h);
|
|
// R = S2 - S1
|
|
StorageType r = modular_sub(s2, s1);
|
|
// X3 = R^2 - H^3 - 2*U1*H^2
|
|
StorageType x3 = modular_square(r);
|
|
x3 = modular_sub(x3, h3);
|
|
temp = modular_multiply(u1, h2);
|
|
temp = modular_add(temp, temp);
|
|
x3 = modular_sub(x3, temp);
|
|
// Y3 = R*(U1*H^2 - X3) - S1*H^3
|
|
StorageType y3 = modular_multiply(u1, h2);
|
|
y3 = modular_sub(y3, x3);
|
|
y3 = modular_multiply(y3, r);
|
|
temp = modular_multiply(s1, h3);
|
|
y3 = modular_sub(y3, temp);
|
|
// Z3 = H*Z1*Z2
|
|
StorageType z3 = modular_multiply(h, point_a.z);
|
|
z3 = modular_multiply(z3, point_b.z);
|
|
// return (X3, Y3, Z3)
|
|
return JacobianPoint { x3, y3, z3 };
|
|
}
|
|
|
|
void convert_jacobian_to_affine(JacobianPoint& point)
|
|
{
|
|
StorageType temp;
|
|
// X' = X/Z^2
|
|
temp = modular_square(point.z);
|
|
temp = modular_inverse(temp);
|
|
point.x = modular_multiply(point.x, temp);
|
|
// Y' = Y/Z^3
|
|
temp = modular_square(point.z);
|
|
temp = modular_multiply(temp, point.z);
|
|
temp = modular_inverse(temp);
|
|
point.y = modular_multiply(point.y, temp);
|
|
// Z' = 1
|
|
point.z = to_montgomery(1u);
|
|
}
|
|
|
|
bool is_point_on_curve(JacobianPoint const& point)
|
|
{
|
|
// This check requires the point to be in Montgomery form, with Z=1
|
|
StorageType temp, temp2;
|
|
|
|
// Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
|
|
temp = modular_square(point.y);
|
|
temp2 = modular_square(point.x);
|
|
temp2 = modular_multiply(temp2, point.x);
|
|
temp = modular_sub(temp, temp2);
|
|
temp = modular_add(temp, point.x);
|
|
temp = modular_add(temp, point.x);
|
|
temp = modular_add(temp, point.x);
|
|
temp = modular_sub(temp, to_montgomery(B));
|
|
temp = modular_reduce(temp);
|
|
|
|
return temp.is_zero_constant_time() && point.z.is_equal_to_constant_time(to_montgomery(1u));
|
|
}
|
|
};
|
|
|
|
// SECP256r1 curve
|
|
static constexpr SECPxxxr1CurveParameters SECP256r1_CURVE_PARAMETERS {
|
|
.prime = "FFFFFFFF_00000001_00000000_00000000_00000000_FFFFFFFF_FFFFFFFF_FFFFFFFF"sv,
|
|
.a = "FFFFFFFF_00000001_00000000_00000000_00000000_FFFFFFFF_FFFFFFFF_FFFFFFFC"sv,
|
|
.b = "5AC635D8_AA3A93E7_B3EBBD55_769886BC_651D06B0_CC53B0F6_3BCE3C3E_27D2604B"sv,
|
|
.order = "FFFFFFFF_00000000_FFFFFFFF_FFFFFFFF_BCE6FAAD_A7179E84_F3B9CAC2_FC632551"sv,
|
|
.generator_point = "04_6B17D1F2_E12C4247_F8BCE6E5_63A440F2_77037D81_2DEB33A0_F4A13945_D898C296_4FE342E2_FE1A7F9B_8EE7EB4A_7C0F9E16_2BCE3357_6B315ECE_CBB64068_37BF51F5"sv,
|
|
};
|
|
using SECP256r1 = SECPxxxr1<256, SECP256r1_CURVE_PARAMETERS>;
|
|
|
|
// SECP384r1 curve
|
|
static constexpr SECPxxxr1CurveParameters SECP384r1_CURVE_PARAMETERS {
|
|
.prime = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_FFFFFFFF_00000000_00000000_FFFFFFFF"sv,
|
|
.a = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_FFFFFFFF_00000000_00000000_FFFFFFFC"sv,
|
|
.b = "B3312FA7_E23EE7E4_988E056B_E3F82D19_181D9C6E_FE814112_0314088F_5013875A_C656398D_8A2ED19D_2A85C8ED_D3EC2AEF"sv,
|
|
.order = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_C7634D81_F4372DDF_581A0DB2_48B0A77A_ECEC196A_CCC52973"sv,
|
|
.generator_point = "04_AA87CA22_BE8B0537_8EB1C71E_F320AD74_6E1D3B62_8BA79B98_59F741E0_82542A38_5502F25D_BF55296C_3A545E38_72760AB7_3617DE4A_96262C6F_5D9E98BF_9292DC29_F8F41DBD_289A147C_E9DA3113_B5F0B8C0_0A60B1CE_1D7E819D_7A431D7C_90EA0E5F"sv,
|
|
};
|
|
using SECP384r1 = SECPxxxr1<384, SECP384r1_CURVE_PARAMETERS>;
|
|
|
|
}
|