ladybird/Libraries/LibCrypto/Curves/Curve25519.cpp

360 lines
8.7 KiB
C++

/*
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Endian.h>
#include <AK/Types.h>
#include <LibCrypto/Curves/Curve25519.h>
namespace Crypto::Curves {
void Curve25519::set(u32* state, u32 value)
{
state[0] = value;
for (auto i = 1; i < WORDS; i++) {
state[i] = 0;
}
}
void Curve25519::modular_square(u32* state, u32 const* value)
{
// Compute R = (A ^ 2) mod p
modular_multiply(state, value, value);
}
void Curve25519::modular_subtract(u32* state, u32 const* first, u32 const* second)
{
// R = (A - B) mod p
i64 temp = -19;
for (auto i = 0; i < WORDS; i++) {
temp += first[i];
temp -= second[i];
state[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// Compute R = A + (2^255 - 19) - B
state[7] += 0x80000000;
modular_reduce(state, state);
}
void Curve25519::modular_add(u32* state, u32 const* first, u32 const* second)
{
// R = (A + B) mod p
u64 temp = 0;
for (auto i = 0; i < WORDS; i++) {
temp += first[i];
temp += second[i];
state[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
modular_reduce(state, state);
}
void Curve25519::modular_multiply(u32* state, u32 const* first, u32 const* second)
{
// Compute R = (A * B) mod p
u64 temp = 0;
u64 carry = 0;
u32 output[WORDS * 2];
// Comba's method
for (auto i = 0; i < 16; i++) {
if (i < WORDS) {
for (auto j = 0; j <= i; j++) {
temp += (u64)first[j] * second[i - j];
carry += temp >> 32;
temp &= 0xFFFFFFFF;
}
} else {
for (auto j = i - 7; j < WORDS; j++) {
temp += (u64)first[j] * second[i - j];
carry += temp >> 32;
temp &= 0xFFFFFFFF;
}
}
output[i] = temp & 0xFFFFFFFF;
temp = carry & 0xFFFFFFFF;
carry >>= 32;
}
// Reduce bit 255 (2^255 = 19 mod p)
temp = (output[7] >> 31) * 19;
// Mask the most significant bit
output[7] &= 0x7FFFFFFF;
// Fast modular reduction 1st pass
for (auto i = 0; i < WORDS; i++) {
temp += output[i];
temp += (u64)output[i + 8] * 38;
output[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// Reduce bit 256 (2^256 = 38 mod p)
temp *= 38;
// Reduce bit 255 (2^255 = 19 mod p)
temp += (output[7] >> 31) * 19;
// Mask the most significant bit
output[7] &= 0x7FFFFFFF;
// Fast modular reduction 2nd pass
for (auto i = 0; i < WORDS; i++) {
temp += output[i];
output[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
modular_reduce(state, output);
}
void Curve25519::export_state(u32* state, u8* output)
{
for (u32 i = 0; i < WORDS; i++) {
state[i] = AK::convert_between_host_and_little_endian(state[i]);
}
memcpy(output, state, BYTES);
}
void Curve25519::import_state(u32* state, u8 const* data)
{
memcpy(state, data, BYTES);
for (u32 i = 0; i < WORDS; i++) {
state[i] = AK::convert_between_host_and_little_endian(state[i]);
}
}
void Curve25519::modular_subtract_single(u32* r, u32 const* a, u32 b)
{
i64 temp = -19;
temp -= b;
// Compute R = A - 19 - B
for (u32 i = 0; i < 8; i++) {
temp += a[i];
r[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// Compute R = A + (2^255 - 19) - B
r[7] += 0x80000000;
modular_reduce(r, r);
}
void Curve25519::modular_add_single(u32* state, u32 const* first, u32 second)
{
u64 temp = second;
// Compute R = A + B
for (u32 i = 0; i < 8; i++) {
temp += first[i];
state[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
modular_reduce(state, state);
}
u32 Curve25519::modular_square_root(u32* r, u32 const* a, u32 const* b)
{
u32 c[8];
u32 u[8];
u32 v[8];
// To compute the square root of (A / B), the first step is to compute the candidate root x = (A / B)^((p+3)/8)
modular_square(v, b);
modular_multiply(v, v, b);
modular_square(v, v);
modular_multiply(v, v, b);
modular_multiply(c, a, v);
modular_square(u, c);
modular_multiply(u, u, c);
modular_square(u, u);
modular_multiply(v, u, c);
to_power_of_2n(u, v, 3);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, c);
to_power_of_2n(u, v, 7);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, c);
to_power_of_2n(u, v, 15);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, c);
to_power_of_2n(u, v, 31);
modular_multiply(v, u, v);
to_power_of_2n(u, v, 62);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, c);
to_power_of_2n(u, v, 125);
modular_multiply(u, u, v);
modular_square(u, u);
modular_square(u, u);
modular_multiply(u, u, c);
// The first candidate root is U = A * B^3 * (A * B^7)^((p - 5) / 8)
modular_multiply(u, u, a);
modular_square(v, b);
modular_multiply(v, v, b);
modular_multiply(u, u, v);
// The second candidate root is V = U * sqrt(-1)
modular_multiply(v, u, SQRT_MINUS_1);
modular_square(c, u);
modular_multiply(c, c, b);
// Check whether B * U^2 = A
u32 first_comparison = compare(c, a);
modular_square(c, v);
modular_multiply(c, c, b);
// Check whether B * V^2 = A
u32 second_comparison = compare(c, a);
// Select the first or the second candidate root
select(r, u, v, first_comparison);
// Return 0 if the square root exists
return first_comparison & second_comparison;
}
u32 Curve25519::compare(u32 const* a, u32 const* b)
{
u32 mask = 0;
for (u32 i = 0; i < 8; i++) {
mask |= a[i] ^ b[i];
}
// Return 0 if A = B, else 1
return ((u32)(mask | (~mask + 1))) >> 31;
}
void Curve25519::modular_reduce(u32* state, u32 const* data)
{
// R = A mod p
u64 temp = 19;
u32 other[WORDS];
for (auto i = 0; i < WORDS; i++) {
temp += data[i];
other[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// Compute B = A - (2^255 - 19)
other[7] -= 0x80000000;
u32 mask = (other[7] & 0x80000000) >> 31;
select(state, other, data, mask);
}
void Curve25519::to_power_of_2n(u32* state, u32 const* value, u8 n)
{
// Pre-compute (A ^ 2) mod p
modular_square(state, value);
// Compute R = (A ^ (2^n)) mod p
for (u32 i = 1; i < n; i++) {
modular_square(state, state);
}
}
void Curve25519::select(u32* state, u32 const* a, u32 const* b, u32 condition)
{
// If B < (2^255 - 19) then R = B, else R = A
u32 mask = condition - 1;
for (auto i = 0; i < WORDS; i++) {
state[i] = (a[i] & mask) | (b[i] & ~mask);
}
}
void Curve25519::copy(u32* state, u32 const* value)
{
for (auto i = 0; i < WORDS; i++) {
state[i] = value[i];
}
}
void Curve25519::modular_multiply_inverse(u32* state, u32 const* value)
{
// Compute R = A^-1 mod p
u32 u[WORDS];
u32 v[WORDS];
// Fermat's little theorem
modular_square(u, value);
modular_multiply(u, u, value);
modular_square(u, u);
modular_multiply(v, u, value);
to_power_of_2n(u, v, 3);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, value);
to_power_of_2n(u, v, 7);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, value);
to_power_of_2n(u, v, 15);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, value);
to_power_of_2n(u, v, 31);
modular_multiply(v, u, v);
to_power_of_2n(u, v, 62);
modular_multiply(u, u, v);
modular_square(u, u);
modular_multiply(v, u, value);
to_power_of_2n(u, v, 125);
modular_multiply(u, u, v);
modular_square(u, u);
modular_square(u, u);
modular_multiply(u, u, value);
modular_square(u, u);
modular_square(u, u);
modular_multiply(u, u, value);
modular_square(u, u);
modular_multiply(state, u, value);
}
void Curve25519::modular_multiply_single(u32* state, u32 const* first, u32 second)
{
// Compute R = (A * B) mod p
u64 temp = 0;
u32 output[WORDS];
for (auto i = 0; i < WORDS; i++) {
temp += (u64)first[i] * second;
output[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// Reduce bit 256 (2^256 = 38 mod p)
temp *= 38;
// Reduce bit 255 (2^255 = 19 mod p)
temp += (output[7] >> 31) * 19;
// Mask the most significant bit
output[7] &= 0x7FFFFFFF;
// Fast modular reduction
for (auto i = 0; i < WORDS; i++) {
temp += output[i];
output[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
modular_reduce(state, output);
}
}