mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-21 23:20:20 +00:00
160 lines
5 KiB
C++
160 lines
5 KiB
C++
/*
|
|
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ByteReader.h>
|
|
#include <AK/Endian.h>
|
|
#include <LibCrypto/Cipher/ChaCha20.h>
|
|
|
|
namespace Crypto::Cipher {
|
|
|
|
ChaCha20::ChaCha20(ReadonlyBytes key, ReadonlyBytes nonce, u32 initial_counter)
|
|
{
|
|
VERIFY(key.size() == 16 || key.size() == 32);
|
|
VERIFY(nonce.size() == 8 || nonce.size() == 12);
|
|
|
|
// The first four words (0-3) are constants
|
|
if (key.size() == 32) {
|
|
m_state[0] = CONSTANT_32_BYTES[0];
|
|
m_state[1] = CONSTANT_32_BYTES[1];
|
|
m_state[2] = CONSTANT_32_BYTES[2];
|
|
m_state[3] = CONSTANT_32_BYTES[3];
|
|
} else {
|
|
m_state[0] = CONSTANT_16_BYTES[0];
|
|
m_state[1] = CONSTANT_16_BYTES[1];
|
|
m_state[2] = CONSTANT_16_BYTES[2];
|
|
m_state[3] = CONSTANT_16_BYTES[3];
|
|
}
|
|
|
|
// The next eight words (4-11) are taken from the key by reading the bytes in little-endian order, in 4-byte chunks.
|
|
for (u32 i = 0; i < 16; i += 4) {
|
|
m_state[(i / 4) + 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(i)));
|
|
}
|
|
|
|
// NOTE: For the 128-bit keys we read the same bytes twice to fill the state
|
|
u32 key_offset = key.size() == 32 ? 16 : 0;
|
|
for (u32 i = 0; i < 16; i += 4) {
|
|
m_state[(i / 4) + 8] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(key_offset + i)));
|
|
}
|
|
|
|
// Word 12 is a block counter. Since each block is 64-bytes, a 32-bit word is enough for 256 gigabytes of data.
|
|
m_state[12] = initial_counter;
|
|
|
|
// Words 13-15 are a nonce, which should not be repeated for the same key.
|
|
// The 13th word is the first 32 bits of the input nonce taken as a little-endian integer,
|
|
// while the 15th word is the last 32 bits.
|
|
|
|
// NOTE: In the case of an 8-byte nonce, we skip the 13th word
|
|
u32 nonce_offset = nonce.size() == 8 ? 1 : 0;
|
|
for (u32 i = 0; i < 12; i += 4) {
|
|
m_state[(i / 4) + 13 + nonce_offset] = AK::convert_between_host_and_little_endian(ByteReader::load32(nonce.offset(i)));
|
|
}
|
|
}
|
|
|
|
// https://datatracker.ietf.org/doc/html/rfc7539#section-2.3
|
|
void ChaCha20::generate_block()
|
|
{
|
|
// Copy the current state into the block
|
|
memcpy(m_block, m_state, 16 * sizeof(u32));
|
|
|
|
// ChaCha20 runs 20 rounds, alternating between "column rounds" and "diagonal rounds".
|
|
// Each round consists of four quarter-rounds
|
|
for (u32 i = 0; i < 20; i += 2) {
|
|
// Column rounds
|
|
do_quarter_round(m_block[0], m_block[4], m_block[8], m_block[12]);
|
|
do_quarter_round(m_block[1], m_block[5], m_block[9], m_block[13]);
|
|
do_quarter_round(m_block[2], m_block[6], m_block[10], m_block[14]);
|
|
do_quarter_round(m_block[3], m_block[7], m_block[11], m_block[15]);
|
|
|
|
// Diagonal rounds
|
|
do_quarter_round(m_block[0], m_block[5], m_block[10], m_block[15]);
|
|
do_quarter_round(m_block[1], m_block[6], m_block[11], m_block[12]);
|
|
do_quarter_round(m_block[2], m_block[7], m_block[8], m_block[13]);
|
|
do_quarter_round(m_block[3], m_block[4], m_block[9], m_block[14]);
|
|
}
|
|
|
|
// At the end of 20 rounds, we add the original input words to the output words,
|
|
for (u32 i = 0; i < 16; i++) {
|
|
m_block[i] += m_state[i];
|
|
}
|
|
|
|
// and serialize the result by sequencing the words one-by-one in little-endian order.
|
|
for (u32 i = 0; i < 16; i++) {
|
|
m_block[i] = AK::convert_between_host_and_little_endian(m_block[i]);
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE static void rotl(u32& x, u32 n)
|
|
{
|
|
x = (x << n) | (x >> (32 - n));
|
|
}
|
|
|
|
// https://datatracker.ietf.org/doc/html/rfc8439#section-2.1
|
|
void ChaCha20::do_quarter_round(u32& a, u32& b, u32& c, u32& d)
|
|
{
|
|
a += b;
|
|
d ^= a;
|
|
rotl(d, 16);
|
|
|
|
c += d;
|
|
b ^= c;
|
|
rotl(b, 12);
|
|
|
|
a += b;
|
|
d ^= a;
|
|
rotl(d, 8);
|
|
|
|
c += d;
|
|
b ^= c;
|
|
rotl(b, 7);
|
|
}
|
|
|
|
void ChaCha20::run_cipher(ReadonlyBytes input, Bytes& output)
|
|
{
|
|
size_t offset = 0;
|
|
size_t block_offset = 0;
|
|
while (offset < input.size()) {
|
|
if (block_offset == 0 || block_offset >= 64) {
|
|
// Generate a new XOR block
|
|
generate_block();
|
|
|
|
// Increment the block counter, and carry over to block 13
|
|
m_state[12]++;
|
|
if (m_state[12] == 0) {
|
|
m_state[13]++;
|
|
}
|
|
|
|
block_offset = 0;
|
|
}
|
|
|
|
// XOR the input and the current block
|
|
u32 n = min(input.size() - offset, 64 - block_offset);
|
|
u8* key_block = (u8*)m_block + block_offset;
|
|
for (u32 i = 0; i < n; i++) {
|
|
u8 input_byte = input.offset_pointer(offset)[i];
|
|
u8 key_byte = key_block[i];
|
|
u8 output_byte = input_byte ^ key_byte;
|
|
|
|
ByteReader::store(output.offset_pointer(offset + i), output_byte);
|
|
}
|
|
|
|
offset += n;
|
|
block_offset += n;
|
|
}
|
|
}
|
|
|
|
void ChaCha20::encrypt(ReadonlyBytes input, Bytes& output)
|
|
{
|
|
VERIFY(input.size() <= output.size());
|
|
this->run_cipher(input, output);
|
|
}
|
|
|
|
void ChaCha20::decrypt(ReadonlyBytes input, Bytes& output)
|
|
{
|
|
VERIFY(input.size() <= output.size());
|
|
this->run_cipher(input, output);
|
|
}
|
|
|
|
}
|