ladybird/Libraries/LibCrypto/BigInt/UnsignedBigInteger.cpp
Timothy Flynn e236f1d2ae LibCrypto: Define UnsignedBigInteger::operator<=
We have all comparison operators except less-than-or-equal already.
2024-11-20 19:04:30 -05:00

766 lines
25 KiB
C++

/*
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "UnsignedBigInteger.h"
#include <AK/BuiltinWrappers.h>
#include <AK/CharacterTypes.h>
#include <AK/FloatingPoint.h>
#include <AK/StringBuilder.h>
#include <AK/StringHash.h>
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
#include <math.h>
namespace Crypto {
UnsignedBigInteger::UnsignedBigInteger(u8 const* ptr, size_t length)
{
m_words.resize_and_keep_capacity((length + sizeof(u32) - 1) / sizeof(u32));
size_t in = length, out = 0;
while (in >= sizeof(u32)) {
in -= sizeof(u32);
u32 word = ((u32)ptr[in] << 24) | ((u32)ptr[in + 1] << 16) | ((u32)ptr[in + 2] << 8) | (u32)ptr[in + 3];
m_words[out++] = word;
}
if (in > 0) {
u32 word = 0;
for (size_t i = 0; i < in; i++) {
word <<= 8;
word |= (u32)ptr[i];
}
m_words[out++] = word;
}
}
UnsignedBigInteger::UnsignedBigInteger(double value)
{
// Because this is currently only used for LibJS we VERIFY some preconditions
// also these values don't have a clear BigInteger representation.
VERIFY(!isnan(value));
VERIFY(!isinf(value));
VERIFY(trunc(value) == value);
VERIFY(value >= 0.0);
if (value <= NumericLimits<u32>::max()) {
m_words.append(static_cast<u32>(value));
return;
}
FloatExtractor<double> extractor;
extractor.d = value;
VERIFY(!extractor.sign);
i32 real_exponent = extractor.exponent - extractor.exponent_bias;
VERIFY(real_exponent > 0);
// Ensure we have enough space, we will need 2^exponent bits, so round up in words
auto word_index = (real_exponent + BITS_IN_WORD) / BITS_IN_WORD;
m_words.resize_and_keep_capacity(word_index);
// Now we just need to put the mantissa with explicit 1 bit at the top at the proper location
u64 raw_mantissa = extractor.mantissa | (1ull << extractor.mantissa_bits);
VERIFY((raw_mantissa & 0xfff0000000000000) == 0x0010000000000000);
// Shift it so the bits we need are at the top
raw_mantissa <<= 64 - extractor.mantissa_bits - 1;
// The initial bit needs to be exactly aligned with exponent, this is 1-indexed
auto top_word_bit_offset = real_exponent % BITS_IN_WORD + 1;
auto top_word_bits_from_mantissa = raw_mantissa >> (64 - top_word_bit_offset);
VERIFY(top_word_bits_from_mantissa <= NumericLimits<Word>::max());
m_words[word_index - 1] = top_word_bits_from_mantissa;
--word_index;
// Shift used bits away
raw_mantissa <<= top_word_bit_offset;
i32 bits_in_mantissa = extractor.mantissa_bits + 1 - top_word_bit_offset;
// Now just put everything at the top of the next words
constexpr auto to_word_shift = 64 - BITS_IN_WORD;
while (word_index > 0 && bits_in_mantissa > 0) {
VERIFY((raw_mantissa >> to_word_shift) <= NumericLimits<Word>::max());
m_words[word_index - 1] = raw_mantissa >> to_word_shift;
raw_mantissa <<= to_word_shift;
bits_in_mantissa -= BITS_IN_WORD;
--word_index;
}
VERIFY(m_words.size() > word_index);
VERIFY((m_words.size() - word_index) <= 3);
// No bits left, otherwise we would have to round
VERIFY(raw_mantissa == 0);
}
UnsignedBigInteger UnsignedBigInteger::create_invalid()
{
UnsignedBigInteger invalid(0);
invalid.invalidate();
return invalid;
}
size_t UnsignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
{
size_t word_count = trimmed_length();
size_t out = 0;
if (word_count > 0) {
ssize_t leading_zeros = -1;
if (remove_leading_zeros) {
UnsignedBigInteger::Word word = m_words[word_count - 1];
for (size_t i = 0; i < sizeof(u32); i++) {
u8 byte = (u8)(word >> ((sizeof(u32) - i - 1) * 8));
data[out++] = byte;
if (leading_zeros < 0 && byte != 0)
leading_zeros = (int)i;
}
}
for (size_t i = word_count - (remove_leading_zeros ? 1 : 0); i > 0; i--) {
auto word = m_words[i - 1];
data[out++] = (u8)(word >> 24);
data[out++] = (u8)(word >> 16);
data[out++] = (u8)(word >> 8);
data[out++] = (u8)word;
}
if (leading_zeros > 0)
out -= leading_zeros;
}
return out;
}
ErrorOr<UnsignedBigInteger> UnsignedBigInteger::from_base(u16 N, StringView str)
{
VERIFY(N <= 36);
UnsignedBigInteger result;
UnsignedBigInteger base { N };
for (auto const& c : str) {
if (c == '_')
continue;
if (!is_ascii_base36_digit(c))
return Error::from_string_literal("Invalid Base36 digit");
auto digit = parse_ascii_base36_digit(c);
if (digit >= N)
return Error::from_string_literal("Base36 digit out of range");
result = result.multiplied_by(base).plus(digit);
}
return result;
}
ErrorOr<String> UnsignedBigInteger::to_base(u16 N) const
{
VERIFY(N <= 36);
if (*this == UnsignedBigInteger { 0 })
return "0"_string;
StringBuilder builder;
UnsignedBigInteger temp(*this);
UnsignedBigInteger quotient;
UnsignedBigInteger remainder;
while (temp != UnsignedBigInteger { 0 }) {
UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(temp, N, quotient, remainder);
VERIFY(remainder.words()[0] < N);
TRY(builder.try_append(to_ascii_base36_digit(remainder.words()[0])));
temp.set_to(quotient);
}
return TRY(builder.to_string()).reverse();
}
ByteString UnsignedBigInteger::to_base_deprecated(u16 N) const
{
return MUST(to_base(N)).to_byte_string();
}
u64 UnsignedBigInteger::to_u64() const
{
static_assert(sizeof(Word) == 4);
if (!length())
return 0;
u64 value = m_words[0];
if (length() > 1)
value |= static_cast<u64>(m_words[1]) << 32;
return value;
}
double UnsignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
{
VERIFY(!is_invalid());
auto highest_bit = one_based_index_of_highest_set_bit();
if (highest_bit == 0)
return 0;
--highest_bit;
using Extractor = FloatExtractor<double>;
// Simple case if less than 2^53 since those number are all exactly representable in doubles
if (highest_bit < Extractor::mantissa_bits + 1)
return static_cast<double>(to_u64());
// If it uses too many bit to represent in a double return infinity
if (highest_bit > Extractor::exponent_bias)
return __builtin_huge_val();
// Otherwise we have to take the top 53 bits, use those as the mantissa,
// and the amount of bits as the exponent. Note that the mantissa has an implicit top bit of 1
// so we have to ignore the very top bit.
// Since we extract at most 53 bits it will take at most 3 words
static_assert(BITS_IN_WORD * 3 >= (Extractor::mantissa_bits + 1));
constexpr auto bits_in_u64 = 64;
static_assert(bits_in_u64 > Extractor::mantissa_bits + 1);
auto bits_to_read = min(static_cast<size_t>(Extractor::mantissa_bits), highest_bit);
auto last_word_index = trimmed_length();
VERIFY(last_word_index > 0);
// Note that highest bit is 0-indexed at this point.
auto highest_bit_index_in_top_word = highest_bit % BITS_IN_WORD;
// Shift initial word until highest bit is just beyond top of u64.
u64 mantissa = m_words[last_word_index - 1];
if (highest_bit_index_in_top_word != 0)
mantissa <<= (bits_in_u64 - highest_bit_index_in_top_word);
else
mantissa = 0;
auto bits_written = highest_bit_index_in_top_word;
--last_word_index;
Optional<Word> dropped_bits_for_rounding;
u8 bits_dropped_from_final_word = 0;
if (bits_written < bits_to_read && last_word_index > 0) {
// Second word can always just cleanly be shifted up to the final bit of the first word
// since the first has at most BIT_IN_WORD - 1, 31
u64 next_word = m_words[last_word_index - 1];
VERIFY((mantissa & (next_word << (bits_in_u64 - bits_written - BITS_IN_WORD))) == 0);
mantissa |= next_word << (bits_in_u64 - bits_written - BITS_IN_WORD);
bits_written += BITS_IN_WORD;
--last_word_index;
if (bits_written > bits_to_read) {
bits_dropped_from_final_word = bits_written - bits_to_read;
dropped_bits_for_rounding = m_words[last_word_index] & ((1 << bits_dropped_from_final_word) - 1);
} else if (bits_written < bits_to_read && last_word_index > 0) {
// The final word has to be shifted down first to discard any excess bits.
u64 final_word = m_words[last_word_index - 1];
--last_word_index;
auto bits_to_write = bits_to_read - bits_written;
bits_dropped_from_final_word = BITS_IN_WORD - bits_to_write;
dropped_bits_for_rounding = final_word & ((1 << bits_dropped_from_final_word) - 1u);
final_word >>= bits_dropped_from_final_word;
// Then move the bits right up to the lowest bits of the second word
VERIFY((mantissa & (final_word << (bits_in_u64 - bits_written - bits_to_write))) == 0);
mantissa |= final_word << (bits_in_u64 - bits_written - bits_to_write);
}
}
// Now the mantissa should be complete so shift it down
mantissa >>= bits_in_u64 - Extractor::mantissa_bits;
if (rounding_mode == RoundingMode::IEEERoundAndTiesToEvenMantissa) {
bool round_up = false;
if (bits_dropped_from_final_word == 0) {
if (last_word_index > 0) {
Word next_word = m_words[last_word_index - 1];
last_word_index--;
if ((next_word & 0x80000000) != 0) {
// next top bit set check for any other bits
if ((next_word ^ 0x80000000) != 0) {
round_up = true;
} else {
while (last_word_index > 0) {
if (m_words[last_word_index - 1] != 0) {
round_up = true;
break;
}
}
// All other bits are 0 which is a tie thus round to even exponent
// Since we are halfway, if exponent ends with 1 we round up, if 0 we round down
round_up = (mantissa & 1) != 0;
}
} else {
round_up = false;
}
} else {
// If there are no words left the rest is implicitly 0 so just round down
round_up = false;
}
} else {
VERIFY(dropped_bits_for_rounding.has_value());
VERIFY(bits_dropped_from_final_word >= 1);
// In this case the top bit comes form the dropped bits
auto top_bit_extractor = 1u << (bits_dropped_from_final_word - 1u);
if ((*dropped_bits_for_rounding & top_bit_extractor) != 0) {
// Possible tie again, if any other bit is set we round up
if ((*dropped_bits_for_rounding ^ top_bit_extractor) != 0) {
round_up = true;
} else {
while (last_word_index > 0) {
if (m_words[last_word_index - 1] != 0) {
round_up = true;
break;
}
}
round_up = (mantissa & 1) != 0;
}
} else {
round_up = false;
}
}
if (round_up) {
++mantissa;
if ((mantissa & (1ull << Extractor::mantissa_bits)) != 0) {
// we overflowed the mantissa
mantissa = 0;
highest_bit++;
// In which case it is possible we have to round to infinity
if (highest_bit > Extractor::exponent_bias)
return __builtin_huge_val();
}
}
} else {
VERIFY(rounding_mode == RoundingMode::RoundTowardZero);
}
Extractor extractor;
extractor.exponent = highest_bit + extractor.exponent_bias;
VERIFY((mantissa & 0xfff0000000000000) == 0);
extractor.mantissa = mantissa;
return extractor.d;
}
void UnsignedBigInteger::set_to_0()
{
m_words.clear_with_capacity();
m_is_invalid = false;
m_cached_trimmed_length = {};
m_cached_hash = 0;
}
void UnsignedBigInteger::set_to(UnsignedBigInteger::Word other)
{
m_is_invalid = false;
m_words.resize_and_keep_capacity(1);
m_words[0] = other;
m_cached_trimmed_length = {};
m_cached_hash = 0;
}
void UnsignedBigInteger::set_to(UnsignedBigInteger const& other)
{
m_is_invalid = other.m_is_invalid;
m_words.resize_and_keep_capacity(other.m_words.size());
__builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32));
m_cached_trimmed_length = {};
m_cached_hash = 0;
}
bool UnsignedBigInteger::is_zero() const
{
for (size_t i = 0; i < length(); ++i) {
if (m_words[i] != 0)
return false;
}
return true;
}
size_t UnsignedBigInteger::trimmed_length() const
{
if (!m_cached_trimmed_length.has_value()) {
size_t num_leading_zeroes = 0;
for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
if (m_words[i] != 0)
break;
}
m_cached_trimmed_length = length() - num_leading_zeroes;
}
return m_cached_trimmed_length.value();
}
void UnsignedBigInteger::clamp_to_trimmed_length()
{
auto length = trimmed_length();
if (m_words.size() > length)
m_words.resize(length);
}
void UnsignedBigInteger::resize_with_leading_zeros(size_t new_length)
{
size_t old_length = length();
if (old_length < new_length) {
m_words.resize_and_keep_capacity(new_length);
__builtin_memset(&m_words.data()[old_length], 0, (new_length - old_length) * sizeof(u32));
}
}
size_t UnsignedBigInteger::one_based_index_of_highest_set_bit() const
{
size_t number_of_words = trimmed_length();
size_t index = 0;
if (number_of_words > 0) {
index += (number_of_words - 1) * BITS_IN_WORD;
index += BITS_IN_WORD - count_leading_zeroes(m_words[number_of_words - 1]);
}
return index;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::add_without_allocation(*this, other, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::subtract_without_allocation(*this, other, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(*this, other, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(*this, other, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(*this, other, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not_fill_to_one_based_index(size_t size) const
{
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::bitwise_not_fill_to_one_based_index_without_allocation(*this, size, result);
return result;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
{
UnsignedBigInteger output;
UnsignedBigInteger temp_result;
UnsignedBigInteger temp_plus;
UnsignedBigIntegerAlgorithms::shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
return output;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_right(size_t num_bits) const
{
UnsignedBigInteger output;
UnsignedBigIntegerAlgorithms::shift_right_without_allocation(*this, num_bits, output);
return output;
}
FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
{
UnsignedBigInteger result;
UnsignedBigInteger temp_shift_result;
UnsignedBigInteger temp_shift_plus;
UnsignedBigInteger temp_shift;
UnsignedBigIntegerAlgorithms::multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, result);
return result;
}
FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
{
UnsignedBigInteger quotient;
UnsignedBigInteger remainder;
// If we actually have a u16-compatible divisor, short-circuit to the
// less computationally-intensive "divide_u16_without_allocation" method.
if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) {
UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
return UnsignedDivisionResult { quotient, remainder };
}
UnsignedBigInteger temp_shift_result;
UnsignedBigInteger temp_shift_plus;
UnsignedBigInteger temp_shift;
UnsignedBigInteger temp_minus;
UnsignedBigIntegerAlgorithms::divide_without_allocation(*this, divisor, quotient, remainder);
return UnsignedDivisionResult { quotient, remainder };
}
u32 UnsignedBigInteger::hash() const
{
if (m_cached_hash != 0)
return m_cached_hash;
return m_cached_hash = string_hash((char const*)m_words.data(), sizeof(Word) * m_words.size());
}
void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
{
size_t const word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
size_t const inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
m_words.ensure_capacity(word_index + 1);
for (size_t i = length(); i <= word_index; ++i) {
m_words.unchecked_append(0);
}
m_words[word_index] |= (1 << inner_word_index);
m_cached_trimmed_length = {};
m_cached_hash = 0;
}
bool UnsignedBigInteger::operator==(UnsignedBigInteger const& other) const
{
if (is_invalid() != other.is_invalid())
return false;
auto length = trimmed_length();
if (length != other.trimmed_length())
return false;
return !__builtin_memcmp(m_words.data(), other.words().data(), length * (BITS_IN_WORD / 8));
}
bool UnsignedBigInteger::operator!=(UnsignedBigInteger const& other) const
{
return !(*this == other);
}
bool UnsignedBigInteger::operator<(UnsignedBigInteger const& other) const
{
auto length = trimmed_length();
auto other_length = other.trimmed_length();
if (length < other_length) {
return true;
}
if (length > other_length) {
return false;
}
if (length == 0) {
return false;
}
for (int i = length - 1; i >= 0; --i) {
if (m_words[i] == other.m_words[i])
continue;
return m_words[i] < other.m_words[i];
}
return false;
}
bool UnsignedBigInteger::operator<=(UnsignedBigInteger const& other) const
{
return *this < other || *this == other;
}
bool UnsignedBigInteger::operator>(UnsignedBigInteger const& other) const
{
return *this != other && !(*this < other);
}
bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const
{
return *this > other || *this == other;
}
UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const
{
VERIFY(!isnan(value));
if (isinf(value)) {
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
}
bool value_is_negative = value < 0;
if (value_is_negative)
return CompareResult::DoubleLessThanBigInt;
// Value is zero.
if (value == 0.0) {
VERIFY(!value_is_negative);
// Either we are also zero or value is certainly less than us.
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
}
// If value is not zero but we are, value must be greater.
if (is_zero())
return CompareResult::DoubleGreaterThanBigInt;
FloatExtractor<double> extractor;
extractor.d = value;
// Value cannot be negative at this point.
VERIFY(extractor.sign == 0);
// Exponent cannot be all set, as then we must be NaN or infinity.
VERIFY(extractor.exponent != (1 << extractor.exponent_bits) - 1);
i32 real_exponent = extractor.exponent - extractor.exponent_bias;
if (real_exponent < 0) {
// value is less than 1, and we cannot be zero so value must be less.
return CompareResult::DoubleLessThanBigInt;
}
u64 bigint_bits_needed = one_based_index_of_highest_set_bit();
VERIFY(bigint_bits_needed > 0);
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
// `exponent - bias + 1` bit to represent doubles value,
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
u32 double_bits_needed = real_exponent + 1;
// If we need more bits to represent us, we must be of greater value.
if (bigint_bits_needed > double_bits_needed)
return CompareResult::DoubleLessThanBigInt;
// If we need less bits to represent us, we must be of less value.
if (bigint_bits_needed < double_bits_needed)
return CompareResult::DoubleGreaterThanBigInt;
u64 mantissa_bits = extractor.mantissa;
// We add the bit which represents the 1. of the double value calculation.
constexpr u64 mantissa_extended_bit = 1ull << extractor.mantissa_bits;
mantissa_bits |= mantissa_extended_bit;
// Now we shift value to the left virtually, with `exponent - bias` steps
// we then pretend both it and the big int are extended with virtual zeros.
auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD;
VERIFY(next_bigint_word == trimmed_length());
auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD;
VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
mantissa_bits <<= 64 - (extractor.mantissa_bits + 1);
auto bits_left_in_mantissa = static_cast<size_t>(extractor.mantissa_bits) + 1;
auto get_next_value_bits = [&](size_t num_bits) -> Word {
VERIFY(num_bits < 63);
VERIFY(bits_left_in_mantissa > 0);
if (num_bits > bits_left_in_mantissa)
num_bits = bits_left_in_mantissa;
bits_left_in_mantissa -= num_bits;
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
// Now shift the bits down to put the most significant bit on the num_bits position
// this means the rest will be "virtual" zeros.
extracted_bits >>= 32;
// Now shift away the used bits and fit the result into a Word.
mantissa_bits <<= num_bits;
VERIFY(extracted_bits <= NumericLimits<Word>::max());
return static_cast<Word>(extracted_bits);
};
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
Word bigint_word = words()[next_bigint_word - 1];
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
// For the first bit we have to align it with the top bit of bigint
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
double_word >>= 32 - bits_in_next_bigint_word;
if (bigint_word < double_word)
return CompareResult::DoubleGreaterThanBigInt;
if (bigint_word > double_word)
return CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
bits_in_next_bigint_word = BITS_IN_WORD;
}
// If there are still bits left in bigint than any non zero bit means it has greater value.
if (next_bigint_word > 0) {
VERIFY(bits_left_in_mantissa == 0);
while (next_bigint_word > 0) {
if (words()[next_bigint_word - 1] != 0)
return CompareResult::DoubleLessThanBigInt;
--next_bigint_word;
}
} else if (bits_left_in_mantissa > 0) {
VERIFY(next_bigint_word == 0);
// Similarly if there are still any bits set in the mantissa it has greater value.
if (mantissa_bits != 0)
return CompareResult::DoubleGreaterThanBigInt;
}
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
return CompareResult::DoubleEqualsBigInt;
}
}
ErrorOr<void> AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value)
{
if (value.is_invalid())
return fmtbuilder.put_string("invalid"sv);
StringBuilder builder;
for (int i = value.length() - 1; i >= 0; --i)
TRY(builder.try_appendff("{}|", value.words()[i]));
return Formatter<StringView>::format(fmtbuilder, builder.string_view());
}