ladybird/Libraries/LibCrypto/BigInt/SignedBigInteger.cpp

399 lines
13 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SignedBigInteger.h"
#include <AK/StringBuilder.h>
#include <math.h>
namespace Crypto {
SignedBigInteger::SignedBigInteger(double value)
: m_sign(value < 0.0)
, m_unsigned_data(fabs(value))
{
}
SignedBigInteger SignedBigInteger::import_data(u8 const* ptr, size_t length)
{
bool sign = *ptr;
auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
return { move(unsigned_data), sign };
}
size_t SignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
{
// FIXME: Support this:
// m <0XX> -> m <XX> (if remove_leading_zeros)
VERIFY(!remove_leading_zeros);
data[0] = m_sign;
auto bytes_view = data.slice(1, data.size() - 1);
return m_unsigned_data.export_data(bytes_view, remove_leading_zeros) + 1;
}
ErrorOr<SignedBigInteger> SignedBigInteger::from_base(u16 N, StringView str)
{
auto sign = false;
if (str.length() > 1) {
auto maybe_sign = str[0];
if (maybe_sign == '-') {
str = str.substring_view(1);
sign = true;
}
if (maybe_sign == '+')
str = str.substring_view(1);
}
auto unsigned_data = TRY(UnsignedBigInteger::from_base(N, str));
return SignedBigInteger { move(unsigned_data), sign };
}
ErrorOr<String> SignedBigInteger::to_base(u16 N) const
{
StringBuilder builder;
if (m_sign)
TRY(builder.try_append('-'));
auto unsigned_as_base = TRY(m_unsigned_data.to_base(N));
TRY(builder.try_append(unsigned_as_base.bytes_as_string_view()));
return builder.to_string();
}
ByteString SignedBigInteger::to_base_deprecated(u16 N) const
{
return MUST(to_base(N)).to_byte_string();
}
u64 SignedBigInteger::to_u64() const
{
u64 unsigned_value = m_unsigned_data.to_u64();
if (!m_sign)
return unsigned_value;
return ~(unsigned_value - 1); // equivalent to `-unsigned_value`, but doesn't trigger UBSAN
}
double SignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
{
double unsigned_value = m_unsigned_data.to_double(rounding_mode);
if (!m_sign)
return unsigned_value;
VERIFY(!is_zero());
return -unsigned_value;
}
FLATTEN SignedBigInteger SignedBigInteger::plus(SignedBigInteger const& other) const
{
// If both are of the same sign, just add the unsigned data and return.
if (m_sign == other.m_sign)
return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
// One value is signed while the other is not.
return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
}
FLATTEN SignedBigInteger SignedBigInteger::minus(SignedBigInteger const& other) const
{
// If the signs are different, convert the op to an addition.
if (m_sign != other.m_sign) {
// -x - y = - (x + y)
// x - -y = (x + y)
SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
if (m_sign)
result.negate();
return result;
}
if (!m_sign) {
// Both operands are positive.
// x - y = - (y - x)
if (m_unsigned_data < other.m_unsigned_data) {
// The result will be negative.
return { other.m_unsigned_data.minus(m_unsigned_data), true };
}
// The result will be either zero, or positive.
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
}
// Both operands are negative.
// -x - -y = y - x
if (m_unsigned_data < other.m_unsigned_data) {
// The result will be positive.
return SignedBigInteger { other.m_unsigned_data.minus(m_unsigned_data) };
}
// y - x = - (x - y)
if (m_unsigned_data > other.m_unsigned_data) {
// The result will be negative.
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data), true };
}
// Both operands have the same magnitude, the result is positive zero.
return SignedBigInteger { 0 };
}
FLATTEN SignedBigInteger SignedBigInteger::plus(UnsignedBigInteger const& other) const
{
if (m_sign) {
if (other < m_unsigned_data)
return { m_unsigned_data.minus(other), true };
return { other.minus(m_unsigned_data), false };
}
return { m_unsigned_data.plus(other), false };
}
FLATTEN SignedBigInteger SignedBigInteger::minus(UnsignedBigInteger const& other) const
{
if (m_sign)
return { m_unsigned_data.plus(m_unsigned_data), true };
if (other < m_unsigned_data)
return { m_unsigned_data.minus(other), false };
return { other.minus(m_unsigned_data), true };
}
FLATTEN SignedBigInteger SignedBigInteger::bitwise_not() const
{
// Bitwise operators assume two's complement, while SignedBigInteger uses sign-magnitude.
// In two's complement, -x := ~x + 1.
// Hence, ~x == -x -1 == -(x + 1).
SignedBigInteger result = plus(SignedBigInteger { 1 });
result.negate();
return result;
}
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
{
return { unsigned_value().multiplied_by(other), m_sign };
}
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
{
auto division_result = unsigned_value().divided_by(divisor);
return {
{ move(division_result.quotient), m_sign },
{ move(division_result.remainder), m_sign },
};
}
FLATTEN SignedBigInteger SignedBigInteger::bitwise_or(SignedBigInteger const& other) const
{
// See bitwise_and() for derivations.
if (!is_negative() && !other.is_negative())
return { unsigned_value().bitwise_or(other.unsigned_value()), false };
// -A | B == (~A + 1) | B == ~(A - 1) | B. The result is negative, so need to two's complement at the end to move the sign into the m_sign field.
// That can be simplified to:
// -(-A | B) == ~(~(A - 1) | B) + 1 = (A - 1) & ~B + 1
// This saves one ~.
if (is_negative() && !other.is_negative()) {
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index)).plus(1), true };
}
// -(A | -B) == ~A & (B - 1) + 1
if (!is_negative() && other.is_negative()) {
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
}
return { unsigned_value().minus(1).bitwise_and(other.unsigned_value().minus(1)).plus(1), true };
}
FLATTEN SignedBigInteger SignedBigInteger::bitwise_and(SignedBigInteger const& other) const
{
if (!is_negative() && !other.is_negative())
return { unsigned_value().bitwise_and(other.unsigned_value()), false };
// These two just use that -x == ~x + 1 (see below).
// -A & B == (~A + 1) & B.
if (is_negative() && !other.is_negative()) {
size_t index = other.unsigned_value().one_based_index_of_highest_set_bit();
return { unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1).bitwise_and(other.unsigned_value()), false };
}
// A & -B == A & (~B + 1).
if (!is_negative() && other.is_negative()) {
size_t index = unsigned_value().one_based_index_of_highest_set_bit();
return { unsigned_value().bitwise_and(other.unsigned_value().bitwise_not_fill_to_one_based_index(index).plus(1)), false };
}
// Both numbers are negative.
// x + ~x == 0xff...ff, up to however many bits x is wide.
// In two's complement, x + ~x + 1 == 0 since the 1 in the overflowing bit position is masked out.
// Rearranging terms, ~x = -x - 1 (eq1).
// Substituting x = y - 1, ~(y - 1) == -(y - 1) - 1 == -y +1 -1 == -y, or ~(y - 1) == -y (eq2).
// Since both numbers are negative, we want to compute -A & -B.
// Per (eq2):
// -A & -B == ~(A - 1) & ~(B - 1)
// Inverting both sides:
// ~(-A & -B) == ~(~(A - 1) & ~(B - 1)) == ~~(A - 1) | ~~(B - 1) == (A - 1) | (B - 1).
// Applying (q1) on the LHS:
// -(-A & -B) - 1 == (A - 1) | (B - 1)
// Adding 1 on both sides and then multiplying both sides by -1:
// -A & -B == -( (A - 1) | (B - 1) + 1)
// So we can compute the bitwise and by returning a negative number with magnitude (A - 1) | (B - 1) + 1.
// This is better than the naive (~A + 1) & (~B + 1) because it needs just one O(n) scan for the or instead of 2 for the ~s.
return { unsigned_value().minus(1).bitwise_or(other.unsigned_value().minus(1)).plus(1), true };
}
FLATTEN SignedBigInteger SignedBigInteger::bitwise_xor(SignedBigInteger const& other) const
{
return bitwise_or(other).minus(bitwise_and(other));
}
bool SignedBigInteger::operator==(UnsignedBigInteger const& other) const
{
if (m_sign && m_unsigned_data != 0)
return false;
return m_unsigned_data == other;
}
bool SignedBigInteger::operator!=(UnsignedBigInteger const& other) const
{
if (m_sign)
return true;
return m_unsigned_data != other;
}
bool SignedBigInteger::operator<(UnsignedBigInteger const& other) const
{
if (m_sign)
return true;
return m_unsigned_data < other;
}
bool SignedBigInteger::operator>(UnsignedBigInteger const& other) const
{
return *this != other && !(*this < other);
}
FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
{
return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
}
FLATTEN SignedBigInteger SignedBigInteger::shift_right(size_t num_bits) const
{
return SignedBigInteger { m_unsigned_data.shift_right(num_bits), m_sign };
}
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(SignedBigInteger const& other) const
{
bool result_sign = m_sign ^ other.m_sign;
return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
}
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(SignedBigInteger const& divisor) const
{
// Aa / Bb -> (A^B)q, Ar
bool result_sign = m_sign ^ divisor.m_sign;
auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
return {
{ move(unsigned_division_result.quotient), result_sign },
{ move(unsigned_division_result.remainder), m_sign }
};
}
FLATTEN SignedBigInteger SignedBigInteger::negated_value() const
{
auto result { *this };
result.negate();
return result;
}
u32 SignedBigInteger::hash() const
{
return m_unsigned_data.hash() * (1 - (2 * m_sign));
}
void SignedBigInteger::set_bit_inplace(size_t bit_index)
{
m_unsigned_data.set_bit_inplace(bit_index);
}
bool SignedBigInteger::operator==(SignedBigInteger const& other) const
{
if (is_invalid() != other.is_invalid())
return false;
if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
return true;
return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
}
bool SignedBigInteger::operator!=(SignedBigInteger const& other) const
{
return !(*this == other);
}
bool SignedBigInteger::operator<(SignedBigInteger const& other) const
{
if (m_sign ^ other.m_sign)
return m_sign;
if (m_sign)
return other.m_unsigned_data < m_unsigned_data;
return m_unsigned_data < other.m_unsigned_data;
}
bool SignedBigInteger::operator<=(SignedBigInteger const& other) const
{
return *this < other || *this == other;
}
bool SignedBigInteger::operator>(SignedBigInteger const& other) const
{
return *this != other && !(*this < other);
}
bool SignedBigInteger::operator>=(SignedBigInteger const& other) const
{
return !(*this < other);
}
UnsignedBigInteger::CompareResult SignedBigInteger::compare_to_double(double value) const
{
bool bigint_is_negative = m_sign;
bool value_is_negative = value < 0;
if (value_is_negative != bigint_is_negative)
return bigint_is_negative ? UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt : UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
// Now both bigint and value have the same sign, so let's compare our magnitudes.
auto magnitudes_compare_result = m_unsigned_data.compare_to_double(fabs(value));
// If our mangnitudes are euqal, then we're equal.
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleEqualsBigInt)
return UnsignedBigInteger::CompareResult::DoubleEqualsBigInt;
// If we're negative, revert the comparison result, otherwise return the same result.
if (value_is_negative) {
if (magnitudes_compare_result == UnsignedBigInteger::CompareResult::DoubleLessThanBigInt)
return UnsignedBigInteger::CompareResult::DoubleGreaterThanBigInt;
else
return UnsignedBigInteger::CompareResult::DoubleLessThanBigInt;
} else {
return magnitudes_compare_result;
}
}
}
ErrorOr<void> AK::Formatter<Crypto::SignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::SignedBigInteger const& value)
{
if (value.is_negative())
TRY(fmtbuilder.put_string("-"sv));
return Formatter<Crypto::UnsignedBigInteger>::format(fmtbuilder, value.unsigned_value());
}