ladybird/Libraries/LibCompress/Xz.cpp

815 lines
32 KiB
C++

/*
* Copyright (c) 2023, Tim Schumacher <timschumi@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <AK/MemoryStream.h>
#include <LibCompress/Lzma2.h>
#include <LibCompress/Xz.h>
#include <LibCrypto/Checksum/CRC32.h>
namespace Compress {
ErrorOr<XzMultibyteInteger> XzMultibyteInteger::read_from_stream(Stream& stream)
{
// 1.2. Multibyte Integers:
// "When smaller values are more likely than bigger values (for
// example file sizes), multibyte integers are encoded in a
// variable-length representation:
// - Numbers in the range [0, 127] are copied as is, and take
// one byte of space.
// - Bigger numbers will occupy two or more bytes. All but the
// last byte of the multibyte representation have the highest
// (eighth) bit set."
// 9 * 7 bits is 63 bits, which is the largest that will fit into an u64.
constexpr size_t maximum_number_of_bytes = 9;
u64 result = 0;
for (size_t i = 0; i < maximum_number_of_bytes; i++) {
u64 const next_byte = TRY(stream.read_value<u8>());
result |= (next_byte & 0x7F) << (i * 7);
// We should reject numbers that are encoded in too many bytes.
if (next_byte == 0x00 && i != 0)
return Error::from_string_literal("XZ multibyte integer has a larger encoding than necessary");
if ((next_byte & 0x80) == 0)
break;
}
return XzMultibyteInteger { result };
}
ErrorOr<void> XzStreamHeader::validate() const
{
// 2.1.1.1. Header Magic Bytes:
// "The first six (6) bytes of the Stream are so called Header
// Magic Bytes. They can be used to identify the file type.
//
// Using a C array and ASCII:
// const uint8_t HEADER_MAGIC[6]
// = { 0xFD, '7', 'z', 'X', 'Z', 0x00 };
//
// In plain hexadecimal:
// FD 37 7A 58 5A 00
//
// If the Header Magic Bytes don't match, the decoder MUST
// indicate an error."
if (magic[0] != 0xFD || magic[1] != '7' || magic[2] != 'z' || magic[3] != 'X' || magic[4] != 'Z' || magic[5] != 0x00)
return Error::from_string_literal("XZ stream header has an invalid magic");
// 2.1.1.2. Stream Flags:
// "If any reserved bit is set, the decoder MUST indicate an error.
// It is possible that there is a new field present which the
// decoder is not aware of, and can thus parse the Stream Header
// incorrectly."
if (flags.reserved != 0 || flags.reserved_bits != 0)
return Error::from_string_literal("XZ stream header has reserved non-null stream flag bits");
// 2.1.1.3. CRC32:
// "The CRC32 is calculated from the Stream Flags field. It is
// stored as an unsigned 32-bit little endian integer. If the
// calculated value does not match the stored one, the decoder
// MUST indicate an error."
if (Crypto::Checksum::CRC32({ &flags, sizeof(flags) }).digest() != flags_crc32)
return Error::from_string_literal("XZ stream header has an invalid CRC32 checksum");
return {};
}
ErrorOr<void> XzStreamFooter::validate() const
{
// 2.1.2.1. CRC32:
// "The CRC32 is calculated from the Backward Size and Stream Flags
// fields. It is stored as an unsigned 32-bit little endian
// integer. If the calculated value does not match the stored one,
// the decoder MUST indicate an error."
Crypto::Checksum::CRC32 calculated_crc32;
calculated_crc32.update({ &encoded_backward_size, sizeof(encoded_backward_size) });
calculated_crc32.update({ &flags, sizeof(flags) });
if (calculated_crc32.digest() != size_and_flags_crc32)
return Error::from_string_literal("XZ stream footer has an invalid CRC32 checksum");
// 2.1.2.4. Footer Magic Bytes:
// "As the last step of the decoding process, the decoder MUST
// verify the existence of Footer Magic Bytes. If they don't
// match, an error MUST be indicated.
//
// Using a C array and ASCII:
// const uint8_t FOOTER_MAGIC[2] = { 'Y', 'Z' };
//
// In hexadecimal:
// 59 5A"
if (magic[0] != 'Y' || magic[1] != 'Z')
return Error::from_string_literal("XZ stream footer has an invalid magic");
return {};
}
u32 XzStreamFooter::backward_size() const
{
// 2.1.2.2. Backward Size:
// "Backward Size is stored as a 32-bit little endian integer,
// which indicates the size of the Index field as multiple of
// four bytes, minimum value being four bytes:
//
// real_backward_size = (stored_backward_size + 1) * 4;"
return (encoded_backward_size + 1) * 4;
}
size_t XzBlockFlags::number_of_filters() const
{
// 3.1.2. Block Flags:
// "Bit(s) Mask Description
// 0-1 0x03 Number of filters (1-4)"
return encoded_number_of_filters + 1;
}
ErrorOr<void> XzFilterLzma2Properties::validate() const
{
// 5.3.1. LZMA2:
// "Bits Mask Description
// 6-7 0xC0 Reserved for future use; MUST be zero for now."
if (reserved != 0)
return Error::from_string_literal("XZ LZMA2 filter properties contains non-null reserved bits");
// " const uint8_t bits = get_dictionary_flags() & 0x3F;
// if (bits > 40)
// return DICTIONARY_TOO_BIG; // Bigger than 4 GiB"
if (encoded_dictionary_size > 40)
return Error::from_string_literal("XZ LZMA2 filter properties contains larger-than-allowed dictionary size");
return {};
}
u32 XzFilterLzma2Properties::dictionary_size() const
{
// "Dictionary Size is encoded with one-bit mantissa and five-bit
// exponent. The smallest dictionary size is 4 KiB and the biggest
// is 4 GiB.
// Instead of having a table in the decoder, the dictionary size
// can be decoded using the following C code:"
if (encoded_dictionary_size == 40)
return NumericLimits<u32>::max();
u32 dictionary_size = 2 | (encoded_dictionary_size & 1);
dictionary_size <<= encoded_dictionary_size / 2 + 11;
return dictionary_size;
}
u32 XzFilterDeltaProperties::distance() const
{
// "The Properties byte indicates the delta distance, which can be
// 1-256 bytes backwards from the current byte: 0x00 indicates
// distance of 1 byte and 0xFF distance of 256 bytes."
return encoded_distance + 1;
}
ErrorOr<NonnullOwnPtr<XzFilterDelta>> XzFilterDelta::create(MaybeOwned<Stream> stream, u32 distance)
{
auto buffer = TRY(CircularBuffer::create_empty(distance));
auto filter = TRY(adopt_nonnull_own_or_enomem(new (nothrow) XzFilterDelta(move(stream), move(buffer))));
return filter;
}
XzFilterDelta::XzFilterDelta(MaybeOwned<Stream> stream, CircularBuffer buffer)
: m_stream(move(stream))
, m_buffer(move(buffer))
{
}
ErrorOr<Bytes> XzFilterDelta::read_some(Bytes bytes)
{
bytes = TRY(m_stream->read_some(bytes));
auto distance = m_buffer.capacity();
for (auto& byte : bytes) {
if (m_buffer.seekback_limit() >= distance) {
u8 byte_at_distance { 0 };
MUST(m_buffer.read_with_seekback({ &byte_at_distance, 1 }, distance));
byte = byte_at_distance + byte;
}
m_buffer.write({ &byte, 1 });
MUST(m_buffer.discard(1));
}
return bytes;
}
ErrorOr<size_t> XzFilterDelta::write_some(ReadonlyBytes)
{
return EBADF;
}
bool XzFilterDelta::is_eof() const
{
return m_stream->is_eof();
}
bool XzFilterDelta::is_open() const
{
return m_stream->is_open();
}
void XzFilterDelta::close()
{
}
ErrorOr<NonnullOwnPtr<XzFilterBCJArm64>> XzFilterBCJArm64::create(MaybeOwned<Stream> stream, u32 start_offset)
{
if (start_offset % INSTRUCTION_ALIGNMENT != 0)
return Error::from_string_literal("XZ BCJ filter offset is not a multiple of the alignment");
auto counting_stream = CountingStream { move(stream) };
auto input_buffer = TRY(CircularBuffer::create_empty(INSTRUCTION_SIZE));
auto output_buffer = TRY(CircularBuffer::create_empty(INSTRUCTION_SIZE));
auto filter = TRY(adopt_nonnull_own_or_enomem(new (nothrow) XzFilterBCJArm64(move(counting_stream), start_offset, move(input_buffer), move(output_buffer))));
return filter;
}
XzFilterBCJArm64::XzFilterBCJArm64(CountingStream stream, u32 start_offset, CircularBuffer input_buffer, CircularBuffer output_buffer)
: m_stream(move(stream))
, m_start_offset(start_offset)
, m_input_buffer(move(input_buffer))
, m_output_buffer(move(output_buffer))
{
}
ErrorOr<Bytes> XzFilterBCJArm64::read_some(Bytes bytes)
{
if (m_output_buffer.used_space() > 0) {
// If we still have buffered outgoing data, return that first.
return m_output_buffer.read(bytes);
}
while (m_input_buffer.used_space() < INSTRUCTION_SIZE) {
if (m_stream.is_eof()) {
// If we can't get any more input data, dump the buffered contents unchanged.
// We won't be able to assemble another instruction.
return m_input_buffer.read(bytes);
}
TRY(m_input_buffer.fill_from_stream(m_stream));
}
// The algorithm considers the offset of the current bytes to be the current program counter.
u32 stream_offset = m_start_offset + m_stream.read_bytes() - m_input_buffer.used_space();
Array<u8, INSTRUCTION_SIZE> buffer;
auto buffer_span = m_input_buffer.read(buffer);
VERIFY(buffer_span.size() == INSTRUCTION_SIZE);
if ((buffer[3] & 0b11111100) == 0b10010100) {
// The ARM64 instruction manual notes that BL is encoded as the following in a little-endian byte order:
// 100101XX XXXXXXX XXXXXXXX XXXXXXXX
// X is an immediate 26 bit value designating the program counter offset divided by 4.
stream_offset >>= 2;
u32 program_counter = ((buffer[3] & 0b11) << 24) | (buffer[2] << 16) | (buffer[1] << 8) | buffer[0];
u32 program_counter_offset = program_counter - stream_offset;
// Reassemble the instruction.
buffer[3] = ((program_counter_offset >> 24) & 0b11) | 0b10010100;
buffer[2] = program_counter_offset >> 16;
buffer[1] = program_counter_offset >> 8;
buffer[0] = program_counter_offset;
} else if ((buffer[3] & 0b10011111) == 0b10010000) {
// ADRP instructions are encoded in the following format:
// 1XX10000 YYYYYYYY YYYYYYYY YYYZZZZZ
// Y:X is an immediate 21 bit value designating the program counter offset divided by 4096 (i.e. a right shift by 12).
// Z is the register number.
stream_offset >>= 12;
auto register_number = buffer[0] & 0b11111;
u32 program_counter = (buffer[2] << 13) | (buffer[1] << 5) | ((buffer[0] >> 3) & 0b11100) | ((buffer[3] >> 5) & 0b11);
// Only offsets between -512MiB and +512MiB are processed, which is suppsoed to reduce false-positives.
// Note: The XZ reference implementation presents a human readable range, an unoptimized condition, and an optimized condition for this.
// Since none of the three entirely match each other, our only option is to copy the exact formula that is used in practice.
if (!((program_counter + 0x00020000) & 0x001C0000)) {
u32 program_counter_offset = program_counter - stream_offset;
// Clip the immediate to 18 bits, then sign-extend to 21 bits.
program_counter_offset &= (1 << 18) - 1;
program_counter_offset |= (0 - (program_counter_offset & (1 << 17))) & (0b111 << 18);
// Reassemble the instruction.
buffer[3] = ((program_counter_offset & 0b11) << 5) | 0b10010000;
buffer[2] = program_counter_offset >> 13;
buffer[1] = program_counter_offset >> 5;
buffer[0] = ((program_counter_offset & 0b11100) << 3) | register_number;
}
}
// Write what we can into the Span, put the rest into the output buffer.
auto size_in_span = min(INSTRUCTION_SIZE, bytes.size());
bytes = bytes.trim(size_in_span);
buffer.span().trim(size_in_span).copy_to(bytes);
if (size_in_span < INSTRUCTION_SIZE) {
auto bytes_written_to_buffer = m_output_buffer.write(buffer.span().slice(size_in_span));
VERIFY(bytes_written_to_buffer == INSTRUCTION_SIZE - size_in_span);
}
return bytes;
}
ErrorOr<size_t> XzFilterBCJArm64::write_some(ReadonlyBytes)
{
return EBADF;
}
bool XzFilterBCJArm64::is_eof() const
{
return m_stream.is_eof();
}
bool XzFilterBCJArm64::is_open() const
{
return m_stream.is_open();
}
void XzFilterBCJArm64::close()
{
}
ErrorOr<NonnullOwnPtr<XzDecompressor>> XzDecompressor::create(MaybeOwned<Stream> stream)
{
auto counting_stream = TRY(try_make<CountingStream>(move(stream)));
auto decompressor = TRY(adopt_nonnull_own_or_enomem(new (nothrow) XzDecompressor(move(counting_stream))));
return decompressor;
}
XzDecompressor::XzDecompressor(NonnullOwnPtr<CountingStream> stream)
: m_stream(move(stream))
{
}
static Optional<size_t> size_for_check_type(XzStreamCheckType check_type)
{
switch (check_type) {
case XzStreamCheckType::None:
return 0;
case XzStreamCheckType::CRC32:
return 4;
case XzStreamCheckType::CRC64:
return 8;
case XzStreamCheckType::SHA256:
return 32;
default:
return {};
}
}
ErrorOr<bool> XzDecompressor::load_next_stream()
{
// If we already determined to have found the last stream footer, there is nothing more to do.
if (m_found_last_stream_footer)
return false;
// This assumes that we can just read the Stream Header into memory as-is. Check that this still holds up for good measure.
static_assert(AK::Traits<XzStreamHeader>::is_trivially_serializable());
XzStreamHeader stream_header {};
Bytes stream_header_bytes { &stream_header, sizeof(stream_header) };
if (m_found_first_stream_header) {
// 2.2. Stream Padding:
// "Stream Padding MUST contain only null bytes. To preserve the
// four-byte alignment of consecutive Streams, the size of Stream
// Padding MUST be a multiple of four bytes. Empty Stream Padding
// is allowed. If these requirements are not met, the decoder MUST
// indicate an error."
VERIFY(m_stream->read_bytes() % 4 == 0);
while (true) {
// Read the first byte until we either get a non-null byte or reach EOF.
auto byte_or_error = m_stream->read_value<u8>();
if (byte_or_error.is_error() && m_stream->is_eof())
break;
auto byte = TRY(byte_or_error);
if (byte != 0) {
stream_header_bytes[0] = byte;
stream_header_bytes = stream_header_bytes.slice(1);
break;
}
}
// If we aren't at EOF we already read the potential first byte of the header, so we need to subtract that.
auto end_of_padding_offset = m_stream->read_bytes();
if (!m_stream->is_eof())
end_of_padding_offset -= 1;
if (end_of_padding_offset % 4 != 0)
return Error::from_string_literal("XZ Stream Padding is not aligned to 4 bytes");
if (m_stream->is_eof()) {
m_found_last_stream_footer = true;
return false;
}
}
TRY(m_stream->read_until_filled(stream_header_bytes));
TRY(stream_header.validate());
m_stream_flags = stream_header.flags;
m_found_first_stream_header = true;
return true;
}
ErrorOr<void> XzDecompressor::load_next_block(u8 encoded_block_header_size)
{
// We already read the encoded Block Header size (one byte) to determine that this is not an Index.
m_current_block_start_offset = m_stream->read_bytes() - 1;
// Ensure that the start of the block is aligned to a multiple of four (in theory, everything in XZ is).
VERIFY(m_current_block_start_offset % 4 == 0);
// 3.1.1. Block Header Size:
// "This field contains the size of the Block Header field,
// including the Block Header Size field itself. Valid values are
// in the range [0x01, 0xFF], which indicate the size of the Block
// Header as multiples of four bytes, minimum size being eight
// bytes:
//
// real_header_size = (encoded_header_size + 1) * 4;"
u64 const block_header_size = (encoded_block_header_size + 1) * 4;
// Read the whole header into a buffer to allow calculating the CRC32 later (3.1.7. CRC32).
auto header = TRY(ByteBuffer::create_uninitialized(block_header_size));
header[0] = encoded_block_header_size;
TRY(m_stream->read_until_filled(header.span().slice(1)));
FixedMemoryStream header_stream { header.span().slice(1) };
// 3.1.2. Block Flags:
// "If any reserved bit is set, the decoder MUST indicate an error.
// It is possible that there is a new field present which the
// decoder is not aware of, and can thus parse the Block Header
// incorrectly."
auto const flags = TRY(header_stream.read_value<XzBlockFlags>());
if (flags.reserved != 0)
return Error::from_string_literal("XZ block header has reserved non-null block flag bits");
MaybeOwned<Stream> new_block_stream { *m_stream };
// 3.1.3. Compressed Size:
// "This field is present only if the appropriate bit is set in
// the Block Flags field (see Section 3.1.2)."
if (flags.compressed_size_present) {
// "Compressed Size is stored using the encoding described in Section 1.2."
u64 const compressed_size = TRY(header_stream.read_value<XzMultibyteInteger>());
// "The Compressed Size field contains the size of the Compressed
// Data field, which MUST be non-zero."
if (compressed_size == 0)
return Error::from_string_literal("XZ block header contains a compressed size of zero");
new_block_stream = TRY(try_make<ConstrainedStream>(move(new_block_stream), compressed_size));
}
// 3.1.4. Uncompressed Size:
// "This field is present only if the appropriate bit is set in
// the Block Flags field (see Section 3.1.2)."
if (flags.uncompressed_size_present) {
// "Uncompressed Size is stored using the encoding described in Section 1.2."
u64 const uncompressed_size = TRY(header_stream.read_value<XzMultibyteInteger>());
m_current_block_expected_uncompressed_size = uncompressed_size;
} else {
m_current_block_expected_uncompressed_size.clear();
}
// We need to process the filters in reverse order, since they are listed in the order that they have been applied in.
struct FilterEntry {
u64 id;
ByteBuffer properties;
bool last;
};
Vector<FilterEntry, 4> filters;
// 3.1.5. List of Filter Flags:
// "The number of Filter Flags fields is stored in the Block Flags
// field (see Section 3.1.2)."
for (size_t i = 0; i < flags.number_of_filters(); i++) {
auto last = (i == flags.number_of_filters() - 1);
// "The format of each Filter Flags field is as follows:
// Both Filter ID and Size of Properties are stored using the
// encoding described in Section 1.2."
u64 const filter_id = TRY(header_stream.read_value<XzMultibyteInteger>());
u64 const size_of_properties = TRY(header_stream.read_value<XzMultibyteInteger>());
// "Size of Properties indicates the size of the Filter Properties field as bytes."
auto filter_properties = TRY(ByteBuffer::create_uninitialized(size_of_properties));
TRY(header_stream.read_until_filled(filter_properties));
filters.empend(filter_id, move(filter_properties), last);
}
for (auto& filter : filters.in_reverse()) {
// 5.3.1. LZMA2
if (filter.id == 0x21) {
if (!filter.last)
return Error::from_string_literal("XZ LZMA2 filter can only be the last filter");
if (filter.properties.size() < sizeof(XzFilterLzma2Properties))
return Error::from_string_literal("XZ LZMA2 filter has a smaller-than-needed properties size");
auto const* properties = reinterpret_cast<XzFilterLzma2Properties*>(filter.properties.data());
TRY(properties->validate());
new_block_stream = TRY(Lzma2Decompressor::create_from_raw_stream(move(new_block_stream), properties->dictionary_size()));
continue;
}
// 5.3.2. Branch/Call/Jump Filters for Executables
if (filter.id == 0x0a) {
if (filter.last)
return Error::from_string_literal("XZ BCJ filter can only be a non-last filter");
u32 start_offset = 0;
if (filter.properties.size() == 0) {
// No start offset given.
} else if (filter.properties.size() == sizeof(XzFilterBCJProperties)) {
auto const* properties = reinterpret_cast<XzFilterBCJProperties*>(filter.properties.data());
start_offset = properties->start_offset;
} else {
return Error::from_string_literal("XZ BCJ filter has an unknown properties size");
}
new_block_stream = TRY(XzFilterBCJArm64::create(move(new_block_stream), start_offset));
continue;
}
// 5.3.3. Delta
if (filter.id == 0x03) {
if (filter.last)
return Error::from_string_literal("XZ Delta filter can only be a non-last filter");
if (filter.properties.size() < sizeof(XzFilterDeltaProperties))
return Error::from_string_literal("XZ Delta filter has a smaller-than-needed properties size");
auto const* properties = reinterpret_cast<XzFilterDeltaProperties*>(filter.properties.data());
new_block_stream = TRY(XzFilterDelta::create(move(new_block_stream), properties->distance()));
continue;
}
return Error::from_string_literal("XZ block header contains unknown filter ID");
}
// 3.1.6. Header Padding:
// "This field contains as many null byte as it is needed to make
// the Block Header have the size specified in Block Header Size."
constexpr size_t size_of_block_header_size = 1;
constexpr size_t size_of_crc32 = 4;
while (MUST(header_stream.tell()) < block_header_size - size_of_block_header_size - size_of_crc32) {
auto const padding_byte = TRY(header_stream.read_value<u8>());
// "If any of the bytes are not null bytes, the decoder MUST
// indicate an error."
if (padding_byte != 0)
return Error::from_string_literal("XZ block header padding contains non-null bytes");
}
// 3.1.7. CRC32:
// "The CRC32 is calculated over everything in the Block Header
// field except the CRC32 field itself.
Crypto::Checksum::CRC32 calculated_header_crc32 { header.span().trim(block_header_size - size_of_crc32) };
// It is stored as an unsigned 32-bit little endian integer.
u32 const stored_header_crc32 = TRY(header_stream.read_value<LittleEndian<u32>>());
// If the calculated value does not match the stored one, the decoder MUST indicate
// an error."
if (calculated_header_crc32.digest() != stored_header_crc32)
return Error::from_string_literal("Stored XZ block header CRC32 does not match the stored CRC32");
m_current_block_stream = move(new_block_stream);
m_current_block_uncompressed_size = 0;
return {};
}
ErrorOr<void> XzDecompressor::finish_current_block()
{
auto unpadded_size = m_stream->read_bytes() - m_current_block_start_offset;
// 3.3. Block Padding:
// "Block Padding MUST contain 0-3 null bytes to make the size of
// the Block a multiple of four bytes. This can be needed when
// the size of Compressed Data is not a multiple of four."
for (size_t i = 0; (unpadded_size + i) % 4 != 0; i++) {
auto const padding_byte = TRY(m_stream->read_value<u8>());
// "If any of the bytes in Block Padding are not null bytes, the decoder
// MUST indicate an error."
if (padding_byte != 0)
return Error::from_string_literal("XZ block contains a non-null padding byte");
}
// 3.4. Check:
// "The type and size of the Check field depends on which bits
// are set in the Stream Flags field (see Section 2.1.1.2).
//
// The Check, when used, is calculated from the original
// uncompressed data. If the calculated Check does not match the
// stored one, the decoder MUST indicate an error. If the selected
// type of Check is not supported by the decoder, it SHOULD
// indicate a warning or error."
auto const maybe_check_size = size_for_check_type(m_stream_flags->check_type);
if (!maybe_check_size.has_value())
return Error::from_string_literal("XZ stream has an unknown check type");
// TODO: Block content checks are currently unimplemented as a whole, independent of the check type.
// For now, we only make sure to remove the correct amount of bytes from the stream.
TRY(m_stream->discard(*maybe_check_size));
unpadded_size += *maybe_check_size;
if (m_current_block_expected_uncompressed_size.has_value()) {
if (*m_current_block_expected_uncompressed_size != m_current_block_uncompressed_size)
return Error::from_string_literal("Uncompressed size of XZ block does not match the expected value");
}
TRY(m_processed_blocks.try_append({
.uncompressed_size = m_current_block_uncompressed_size,
.unpadded_size = unpadded_size,
}));
return {};
}
ErrorOr<void> XzDecompressor::finish_current_stream()
{
// We already read the Index Indicator (one byte) to determine that this is an Index.
auto const start_of_current_block = m_stream->read_bytes() - 1;
// 4.2. Number of Records:
// "This field indicates how many Records there are in the List
// of Records field, and thus how many Blocks there are in the
// Stream. The value is stored using the encoding described in
// Section 1.2."
u64 const number_of_records = TRY(m_stream->read_value<XzMultibyteInteger>());
if (m_processed_blocks.size() != number_of_records)
return Error::from_string_literal("Number of Records in XZ Index does not match the number of processed Blocks");
// 4.3. List of Records:
// "List of Records consists of as many Records as indicated by the
// Number of Records field:"
for (u64 i = 0; i < number_of_records; i++) {
// "Each Record contains information about one Block:
//
// +===============+===================+
// | Unpadded Size | Uncompressed Size |
// +===============+===================+"
// 4.3.1. Unpadded Size:
// "This field indicates the size of the Block excluding the Block
// Padding field. That is, Unpadded Size is the size of the Block
// Header, Compressed Data, and Check fields. Unpadded Size is
// stored using the encoding described in Section 1.2."
u64 const unpadded_size = TRY(m_stream->read_value<XzMultibyteInteger>());
// "The value MUST never be zero; with the current structure of Blocks, the
// actual minimum value for Unpadded Size is five."
if (unpadded_size < 5)
return Error::from_string_literal("XZ index contains a record with an unpadded size of less than five");
// 4.3.2. Uncompressed Size:
// "This field indicates the Uncompressed Size of the respective
// Block as bytes. The value is stored using the encoding
// described in Section 1.2."
u64 const uncompressed_size = TRY(m_stream->read_value<XzMultibyteInteger>());
// 4.3. List of Records:
// "If the decoder has decoded all the Blocks of the Stream, it
// MUST verify that the contents of the Records match the real
// Unpadded Size and Uncompressed Size of the respective Blocks."
if (m_processed_blocks[i].uncompressed_size != uncompressed_size)
return Error::from_string_literal("Uncompressed size of XZ Block does not match the Index");
if (m_processed_blocks[i].unpadded_size != unpadded_size)
return Error::from_string_literal("Unpadded size of XZ Block does not match the Index");
}
// 4.4. Index Padding:
// "This field MUST contain 0-3 null bytes to pad the Index to
// a multiple of four bytes. If any of the bytes are not null
// bytes, the decoder MUST indicate an error."
while ((m_stream->read_bytes() - start_of_current_block) % 4 != 0) {
auto padding_byte = TRY(m_stream->read_value<u8>());
if (padding_byte != 0)
return Error::from_string_literal("XZ index contains a non-null padding byte");
}
// 4.5. CRC32:
// "The CRC32 is calculated over everything in the Index field
// except the CRC32 field itself. The CRC32 is stored as an
// unsigned 32-bit little endian integer."
u32 const index_crc32 = TRY(m_stream->read_value<LittleEndian<u32>>());
// "If the calculated value does not match the stored one, the decoder MUST indicate
// an error."
// TODO: Validation of the index CRC32 is currently unimplemented.
(void)index_crc32;
auto const size_of_index = m_stream->read_bytes() - start_of_current_block;
// According to the specification of a stream (2.1. Stream), the index is the last element in a stream,
// followed by the stream footer (2.1.2. Stream Footer).
auto const stream_footer = TRY(m_stream->read_value<XzStreamFooter>());
// This handles verifying the CRC32 (2.1.2.1. CRC32) and the magic bytes (2.1.2.4. Footer Magic Bytes).
TRY(stream_footer.validate());
// 2.1.2.2. Backward Size:
// "If the stored value does not match the real size of the Index
// field, the decoder MUST indicate an error."
if (stream_footer.backward_size() != size_of_index)
return Error::from_string_literal("XZ index size does not match the stored size in the stream footer");
// 2.1.2.3. Stream Flags:
// "This is a copy of the Stream Flags field from the Stream
// Header. The information stored to Stream Flags is needed
// when parsing the Stream backwards. The decoder MUST compare
// the Stream Flags fields in both Stream Header and Stream
// Footer, and indicate an error if they are not identical."
if (ReadonlyBytes { &*m_stream_flags, sizeof(XzStreamFlags) } != ReadonlyBytes { &stream_footer.flags, sizeof(stream_footer.flags) })
return Error::from_string_literal("XZ stream header flags don't match the stream footer");
return {};
}
ErrorOr<Bytes> XzDecompressor::read_some(Bytes bytes)
{
if (!m_stream_flags.has_value()) {
if (!TRY(load_next_stream()))
return bytes.trim(0);
}
if (!m_current_block_stream.has_value() || (*m_current_block_stream)->is_eof()) {
if (m_current_block_stream.has_value()) {
// We have already processed a block, so we weed to clean up trailing data before the next block starts.
TRY(finish_current_block());
}
// The first byte between Block Header (3.1.1. Block Header Size) and Index (4.1. Index Indicator) overlap.
// Block header sizes have valid values in the range of [0x01, 0xFF], the only valid value for an Index Indicator is therefore 0x00.
auto const encoded_block_header_size_or_index_indicator = TRY(m_stream->read_value<u8>());
if (encoded_block_header_size_or_index_indicator == 0x00) {
// This is an Index, which is the last element before the stream footer.
TRY(finish_current_stream());
// Another XZ Stream might follow, so we just unset the current information and continue on the next read.
m_stream_flags.clear();
m_processed_blocks.clear();
return bytes.trim(0);
}
TRY(load_next_block(encoded_block_header_size_or_index_indicator));
}
auto result = TRY((*m_current_block_stream)->read_some(bytes));
m_current_block_uncompressed_size += result.size();
return result;
}
ErrorOr<size_t> XzDecompressor::write_some(ReadonlyBytes)
{
return Error::from_errno(EBADF);
}
bool XzDecompressor::is_eof() const
{
return m_found_last_stream_footer;
}
bool XzDecompressor::is_open() const
{
return true;
}
void XzDecompressor::close()
{
}
}