/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // FIXME: Thread safety. #define RECYCLE_BIG_ALLOCATIONS #define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1))) static LibThread::Lock& malloc_lock() { static u32 lock_storage[sizeof(LibThread::Lock) / sizeof(u32)]; return *reinterpret_cast(&lock_storage); } constexpr size_t number_of_chunked_blocks_to_keep_around_per_size_class = 4; constexpr size_t number_of_big_blocks_to_keep_around_per_size_class = 8; static bool s_log_malloc = false; static bool s_scrub_malloc = true; static bool s_scrub_free = true; static bool s_profiling = false; static bool s_in_userspace_emulator = false; ALWAYS_INLINE static void ue_notify_malloc(const void* ptr, size_t size) { if (s_in_userspace_emulator) syscall(SC_emuctl, 1, size, (FlatPtr)ptr); } ALWAYS_INLINE static void ue_notify_free(const void* ptr) { if (s_in_userspace_emulator) syscall(SC_emuctl, 2, (FlatPtr)ptr, 0); } ALWAYS_INLINE static void ue_notify_realloc(const void* ptr, size_t size) { if (s_in_userspace_emulator) syscall(SC_emuctl, 3, size, (FlatPtr)ptr); } struct MallocStats { size_t number_of_malloc_calls; size_t number_of_big_allocator_hits; size_t number_of_big_allocator_purge_hits; size_t number_of_big_allocs; size_t number_of_empty_block_hits; size_t number_of_empty_block_purge_hits; size_t number_of_block_allocs; size_t number_of_blocks_full; size_t number_of_free_calls; size_t number_of_big_allocator_keeps; size_t number_of_big_allocator_frees; size_t number_of_freed_full_blocks; size_t number_of_keeps; size_t number_of_frees; }; static MallocStats g_malloc_stats = {}; struct Allocator { size_t size { 0 }; size_t block_count { 0 }; size_t empty_block_count { 0 }; ChunkedBlock* empty_blocks[number_of_chunked_blocks_to_keep_around_per_size_class] { nullptr }; InlineLinkedList usable_blocks; InlineLinkedList full_blocks; }; struct BigAllocator { Vector blocks; }; // Allocators will be initialized in __malloc_init. // We can not rely on global constructors to initialize them, // because they must be initialized before other global constructors // are run. Similarly, we can not allow global destructors to destruct // them. We could have used AK::NeverDestoyed to prevent the latter, // but it would have not helped with the former. static u8 g_allocators_storage[sizeof(Allocator) * size_classes.size()]; static u8 g_big_allocators_storage[sizeof(BigAllocator)]; static inline Allocator (&allocators())[size_classes.size()] { return reinterpret_cast(g_allocators_storage); } static inline BigAllocator (&big_allocators())[1] { return reinterpret_cast(g_big_allocators_storage); } static Allocator* allocator_for_size(size_t size, size_t& good_size) { for (size_t i = 0; size_classes[i]; ++i) { if (size <= size_classes[i]) { good_size = size_classes[i]; return &allocators()[i]; } } good_size = PAGE_ROUND_UP(size); return nullptr; } #ifdef RECYCLE_BIG_ALLOCATIONS static BigAllocator* big_allocator_for_size(size_t size) { if (size == 65536) return &big_allocators()[0]; return nullptr; } #endif extern "C" { static void* os_alloc(size_t size, const char* name) { auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0, ChunkedBlock::block_size, name); VERIFY(ptr != MAP_FAILED); return ptr; } static void os_free(void* ptr, size_t size) { int rc = munmap(ptr, size); assert(rc == 0); } enum class CallerWillInitializeMemory { No, Yes, }; static void* malloc_impl(size_t size, CallerWillInitializeMemory caller_will_initialize_memory) { LibThread::Locker locker(malloc_lock()); if (s_log_malloc) dbgln("LibC: malloc({})", size); if (!size) { // Legally we could just return a null pointer here, but this is more // compatible with existing software. size = 1; } g_malloc_stats.number_of_malloc_calls++; size_t good_size; auto* allocator = allocator_for_size(size, good_size); if (!allocator) { size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, ChunkedBlock::block_size); #ifdef RECYCLE_BIG_ALLOCATIONS if (auto* allocator = big_allocator_for_size(real_size)) { if (!allocator->blocks.is_empty()) { g_malloc_stats.number_of_big_allocator_hits++; auto* block = allocator->blocks.take_last(); int rc = madvise(block, real_size, MADV_SET_NONVOLATILE); bool this_block_was_purged = rc == 1; if (rc < 0) { perror("madvise"); VERIFY_NOT_REACHED(); } if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) { perror("mprotect"); VERIFY_NOT_REACHED(); } if (this_block_was_purged) { g_malloc_stats.number_of_big_allocator_purge_hits++; new (block) BigAllocationBlock(real_size); } ue_notify_malloc(&block->m_slot[0], size); return &block->m_slot[0]; } } #endif g_malloc_stats.number_of_big_allocs++; auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock"); new (block) BigAllocationBlock(real_size); ue_notify_malloc(&block->m_slot[0], size); return &block->m_slot[0]; } ChunkedBlock* block = nullptr; for (block = allocator->usable_blocks.head(); block; block = block->next()) { if (block->free_chunks()) break; } if (!block && allocator->empty_block_count) { g_malloc_stats.number_of_empty_block_hits++; block = allocator->empty_blocks[--allocator->empty_block_count]; int rc = madvise(block, ChunkedBlock::block_size, MADV_SET_NONVOLATILE); bool this_block_was_purged = rc == 1; if (rc < 0) { perror("madvise"); VERIFY_NOT_REACHED(); } rc = mprotect(block, ChunkedBlock::block_size, PROT_READ | PROT_WRITE); if (rc < 0) { perror("mprotect"); VERIFY_NOT_REACHED(); } if (this_block_was_purged) { g_malloc_stats.number_of_empty_block_purge_hits++; new (block) ChunkedBlock(good_size); } allocator->usable_blocks.append(block); } if (!block) { g_malloc_stats.number_of_block_allocs++; char buffer[64]; snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size); block = (ChunkedBlock*)os_alloc(ChunkedBlock::block_size, buffer); new (block) ChunkedBlock(good_size); allocator->usable_blocks.append(block); ++allocator->block_count; } --block->m_free_chunks; void* ptr = block->m_freelist; if (ptr) { block->m_freelist = block->m_freelist->next; } else { ptr = block->m_slot + block->m_next_lazy_freelist_index * block->m_size; block->m_next_lazy_freelist_index++; } VERIFY(ptr); if (block->is_full()) { g_malloc_stats.number_of_blocks_full++; dbgln_if(MALLOC_DEBUG, "Block {:p} is now full in size class {}", block, good_size); allocator->usable_blocks.remove(block); allocator->full_blocks.append(block); } dbgln_if(MALLOC_DEBUG, "LibC: allocated {:p} (chunk in block {:p}, size {})", ptr, block, block->bytes_per_chunk()); if (s_scrub_malloc && caller_will_initialize_memory == CallerWillInitializeMemory::No) memset(ptr, MALLOC_SCRUB_BYTE, block->m_size); ue_notify_malloc(ptr, size); return ptr; } static void free_impl(void* ptr) { ScopedValueRollback rollback(errno); if (!ptr) return; g_malloc_stats.number_of_free_calls++; LibThread::Locker locker(malloc_lock()); void* block_base = (void*)((FlatPtr)ptr & ChunkedBlock::ChunkedBlock::block_mask); size_t magic = *(size_t*)block_base; if (magic == MAGIC_BIGALLOC_HEADER) { auto* block = (BigAllocationBlock*)block_base; #ifdef RECYCLE_BIG_ALLOCATIONS if (auto* allocator = big_allocator_for_size(block->m_size)) { if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) { g_malloc_stats.number_of_big_allocator_keeps++; allocator->blocks.append(block); size_t this_block_size = block->m_size; if (mprotect(block, this_block_size, PROT_NONE) < 0) { perror("mprotect"); VERIFY_NOT_REACHED(); } if (madvise(block, this_block_size, MADV_SET_VOLATILE) != 0) { perror("madvise"); VERIFY_NOT_REACHED(); } return; } } #endif g_malloc_stats.number_of_big_allocator_frees++; os_free(block, block->m_size); return; } assert(magic == MAGIC_PAGE_HEADER); auto* block = (ChunkedBlock*)block_base; dbgln_if(MALLOC_DEBUG, "LibC: freeing {:p} in allocator {:p} (size={}, used={})", ptr, block, block->bytes_per_chunk(), block->used_chunks()); if (s_scrub_free) memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk()); auto* entry = (FreelistEntry*)ptr; entry->next = block->m_freelist; block->m_freelist = entry; if (block->is_full()) { size_t good_size; auto* allocator = allocator_for_size(block->m_size, good_size); dbgln_if(MALLOC_DEBUG, "Block {:p} no longer full in size class {}", block, good_size); g_malloc_stats.number_of_freed_full_blocks++; allocator->full_blocks.remove(block); allocator->usable_blocks.prepend(block); } ++block->m_free_chunks; if (!block->used_chunks()) { size_t good_size; auto* allocator = allocator_for_size(block->m_size, good_size); if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) { dbgln_if(MALLOC_DEBUG, "Keeping block {:p} around for size class {}", block, good_size); g_malloc_stats.number_of_keeps++; allocator->usable_blocks.remove(block); allocator->empty_blocks[allocator->empty_block_count++] = block; mprotect(block, ChunkedBlock::block_size, PROT_NONE); madvise(block, ChunkedBlock::block_size, MADV_SET_VOLATILE); return; } dbgln_if(MALLOC_DEBUG, "Releasing block {:p} for size class {}", block, good_size); g_malloc_stats.number_of_frees++; allocator->usable_blocks.remove(block); --allocator->block_count; os_free(block, ChunkedBlock::block_size); } } [[gnu::flatten]] void* malloc(size_t size) { void* ptr = malloc_impl(size, CallerWillInitializeMemory::No); if (s_profiling) perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast(ptr)); return ptr; } [[gnu::flatten]] void free(void* ptr) { if (s_profiling) perf_event(PERF_EVENT_FREE, reinterpret_cast(ptr), 0); ue_notify_free(ptr); free_impl(ptr); } void* calloc(size_t count, size_t size) { size_t new_size = count * size; auto* ptr = malloc_impl(new_size, CallerWillInitializeMemory::Yes); if (ptr) memset(ptr, 0, new_size); return ptr; } size_t malloc_size(void* ptr) { if (!ptr) return 0; LibThread::Locker locker(malloc_lock()); void* page_base = (void*)((FlatPtr)ptr & ChunkedBlock::block_mask); auto* header = (const CommonHeader*)page_base; auto size = header->m_size; if (header->m_magic == MAGIC_BIGALLOC_HEADER) size -= sizeof(CommonHeader); else VERIFY(header->m_magic == MAGIC_PAGE_HEADER); return size; } size_t malloc_good_size(size_t size) { size_t good_size; allocator_for_size(size, good_size); return good_size; } void* realloc(void* ptr, size_t size) { if (!ptr) return malloc(size); if (!size) return nullptr; LibThread::Locker locker(malloc_lock()); auto existing_allocation_size = malloc_size(ptr); if (size <= existing_allocation_size) { ue_notify_realloc(ptr, size); return ptr; } auto* new_ptr = malloc(size); if (new_ptr) { memcpy(new_ptr, ptr, min(existing_allocation_size, size)); free(ptr); } return new_ptr; } void __malloc_init() { new (&malloc_lock()) LibThread::Lock(); s_in_userspace_emulator = (int)syscall(SC_emuctl, 0) != -ENOSYS; if (s_in_userspace_emulator) { // Don't bother scrubbing memory if we're running in UE since it // keeps track of heap memory anyway. s_scrub_malloc = false; s_scrub_free = false; } if (secure_getenv("LIBC_NOSCRUB_MALLOC")) s_scrub_malloc = false; if (secure_getenv("LIBC_NOSCRUB_FREE")) s_scrub_free = false; if (secure_getenv("LIBC_LOG_MALLOC")) s_log_malloc = true; if (secure_getenv("LIBC_PROFILE_MALLOC")) s_profiling = true; for (size_t i = 0; i < size_classes.size(); ++i) { new (&allocators()[i]) Allocator(); allocators()[i].size = size_classes[i]; } new (&big_allocators()[0])(BigAllocator); } void serenity_dump_malloc_stats() { dbgln("# malloc() calls: {}", g_malloc_stats.number_of_malloc_calls); dbgln(); dbgln("big alloc hits: {}", g_malloc_stats.number_of_big_allocator_hits); dbgln("big alloc hits that were purged: {}", g_malloc_stats.number_of_big_allocator_purge_hits); dbgln("big allocs: {}", g_malloc_stats.number_of_big_allocs); dbgln(); dbgln("empty block hits: {}", g_malloc_stats.number_of_empty_block_hits); dbgln("empty block hits that were purged: {}", g_malloc_stats.number_of_empty_block_purge_hits); dbgln("block allocs: {}", g_malloc_stats.number_of_block_allocs); dbgln("filled blocks: {}", g_malloc_stats.number_of_blocks_full); dbgln(); dbgln("# free() calls: {}", g_malloc_stats.number_of_free_calls); dbgln(); dbgln("big alloc keeps: {}", g_malloc_stats.number_of_big_allocator_keeps); dbgln("big alloc frees: {}", g_malloc_stats.number_of_big_allocator_frees); dbgln(); dbgln("full block frees: {}", g_malloc_stats.number_of_freed_full_blocks); dbgln("number of keeps: {}", g_malloc_stats.number_of_keeps); dbgln("number of frees: {}", g_malloc_stats.number_of_frees); } }