#include "MemoryManager.h" #include #include #include #include "i386.h" #include "StdLib.h" #include "Task.h" static MemoryManager* s_the; MemoryManager& MM { return *s_the; } MemoryManager::MemoryManager() { m_pageDirectory = (dword*)0x5000; m_pageTableZero = (dword*)0x6000; m_pageTableOne = (dword*)0x7000; initializePaging(); } MemoryManager::~MemoryManager() { } void MemoryManager::initializePaging() { static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4); static_assert(sizeof(MemoryManager::PageTableEntry) == 4); memset(m_pageTableZero, 0, 4096); memset(m_pageTableOne, 0, 4096); memset(m_pageDirectory, 0, 4096); kprintf("MM: Page directory @ %p\n", m_pageDirectory); kprintf("MM: Page table zero @ %p\n", m_pageTableZero); kprintf("MM: Page table one @ %p\n", m_pageTableOne); // Make null dereferences crash. protectMap(LinearAddress(0), 4 * KB); identityMap(LinearAddress(4096), 4 * MB); // Put pages between 4MB and 8MB in the page freelist. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE) { m_freePages.append(PhysicalAddress(i)); } asm volatile("movl %%eax, %%cr3"::"a"(m_pageDirectory)); asm volatile( "movl %cr0, %eax\n" "orl $0x80000001, %eax\n" "movl %eax, %cr0\n" ); } void* MemoryManager::allocatePageTable() { auto ppages = allocatePhysicalPages(1); dword address = ppages[0].get(); identityMap(LinearAddress(address), 4096); return (void*)address; } auto MemoryManager::ensurePTE(LinearAddress linearAddress) -> PageTableEntry { ASSERT_INTERRUPTS_DISABLED(); dword pageDirectoryIndex = (linearAddress.get() >> 22) & 0x3ff; dword pageTableIndex = (linearAddress.get() >> 12) & 0x3ff; PageDirectoryEntry pde = PageDirectoryEntry(&m_pageDirectory[pageDirectoryIndex]); if (!pde.isPresent()) { kprintf("PDE %u !present, allocating\n", pageDirectoryIndex); if (pageDirectoryIndex == 0) { pde.setPageTableBase((dword)m_pageTableZero); pde.setUserAllowed(true); pde.setPresent(true); pde.setWritable(true); } else if (pageDirectoryIndex == 1) { pde.setPageTableBase((dword)m_pageTableOne); pde.setUserAllowed(true); pde.setPresent(true); pde.setWritable(true); } else { auto* pageTable = allocatePageTable(); kprintf("allocated page table %u (for laddr=%p) at %p\n", pageDirectoryIndex, linearAddress.get(), pageTable); memset(pageTable, 0, 4096); pde.setPageTableBase((dword)pageTable); pde.setUserAllowed(true); pde.setPresent(true); pde.setWritable(true); } } return PageTableEntry(&pde.pageTableBase()[pageTableIndex]); } void MemoryManager::protectMap(LinearAddress linearAddress, size_t length) { InterruptDisabler disabler; // FIXME: ASSERT(linearAddress is 4KB aligned); for (dword offset = 0; offset < length; offset += 4096) { auto pteAddress = linearAddress.offset(offset); auto pte = ensurePTE(pteAddress); pte.setPhysicalPageBase(pteAddress.get()); pte.setUserAllowed(false); pte.setPresent(false); pte.setWritable(false); flushTLB(pteAddress); } } void MemoryManager::identityMap(LinearAddress linearAddress, size_t length) { InterruptDisabler disabler; // FIXME: ASSERT(linearAddress is 4KB aligned); for (dword offset = 0; offset < length; offset += 4096) { auto pteAddress = linearAddress.offset(offset); auto pte = ensurePTE(pteAddress); pte.setPhysicalPageBase(pteAddress.get()); pte.setUserAllowed(true); pte.setPresent(true); pte.setWritable(true); flushTLB(pteAddress); } } void MemoryManager::initialize() { s_the = new MemoryManager; } PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault) { ASSERT_INTERRUPTS_DISABLED(); kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get()); if (fault.isNotPresent()) { kprintf(" >> NP fault!\n"); } else if (fault.isProtectionViolation()) { kprintf(" >> PV fault!\n"); } return PageFaultResponse::ShouldCrash; } RetainPtr MemoryManager::createZone(size_t size) { auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE)); if (pages.isEmpty()) { kprintf("MM: createZone: no physical pages for size %u", size); return nullptr; } return adopt(*new Zone(move(pages))); } Vector MemoryManager::allocatePhysicalPages(size_t count) { InterruptDisabler disabler; if (count > m_freePages.size()) return { }; Vector pages; pages.ensureCapacity(count); for (size_t i = 0; i < count; ++i) pages.append(m_freePages.takeLast()); return pages; } byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress) { ASSERT_INTERRUPTS_DISABLED(); auto pte = ensurePTE(LinearAddress(4 * MB)); kprintf("quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr()); pte.setPhysicalPageBase(physicalAddress.pageBase()); pte.setPresent(true); pte.setWritable(true); flushTLB(LinearAddress(4 * MB)); return (byte*)(4 * MB); } void MemoryManager::flushEntireTLB() { asm volatile( "mov %cr3, %eax\n" "mov %eax, %cr3\n" ); } void MemoryManager::flushTLB(LinearAddress laddr) { asm volatile("invlpg %0": :"m" (*(char*)laddr.get())); } bool MemoryManager::unmapRegion(Task& task, Task::Region& region) { InterruptDisabler disabler; auto& zone = *region.zone; for (size_t i = 0; i < zone.m_pages.size(); ++i) { auto laddr = region.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(laddr); pte.setPhysicalPageBase(0); pte.setPresent(false); pte.setWritable(false); pte.setUserAllowed(false); flushTLB(laddr); //kprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get()); } return true; } bool MemoryManager::unmapSubregion(Task& task, Task::Subregion& subregion) { InterruptDisabler disabler; auto& region = *subregion.region; auto& zone = *region.zone; size_t numPages = subregion.size / 4096; ASSERT(numPages); for (size_t i = 0; i < numPages; ++i) { auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(laddr); pte.setPhysicalPageBase(0); pte.setPresent(false); pte.setWritable(false); pte.setUserAllowed(false); flushTLB(laddr); //kprintf("MM: >> Unmapped subregion %s L%x => P%x <<\n", subregion.name.characters(), laddr, zone.m_pages[i].get()); } return true; } bool MemoryManager::unmapRegionsForTask(Task& task) { ASSERT_INTERRUPTS_DISABLED(); for (auto& region : task.m_regions) { if (!unmapRegion(task, *region)) return false; } for (auto& subregion : task.m_subregions) { if (!unmapSubregion(task, *subregion)) return false; } return true; } bool MemoryManager::mapSubregion(Task& task, Task::Subregion& subregion) { InterruptDisabler disabler; auto& region = *subregion.region; auto& zone = *region.zone; size_t firstPage = subregion.offset / 4096; size_t numPages = subregion.size / 4096; ASSERT(numPages); for (size_t i = 0; i < numPages; ++i) { auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(laddr); pte.setPhysicalPageBase(zone.m_pages[firstPage + i].get()); pte.setPresent(true); pte.setWritable(true); pte.setUserAllowed(!task.isRing0()); flushTLB(laddr); //kprintf("MM: >> Mapped subregion %s L%x => P%x (%u into region)<<\n", subregion.name.characters(), laddr, zone.m_pages[firstPage + i].get(), subregion.offset); } return true; } bool MemoryManager::mapRegion(Task& task, Task::Region& region) { InterruptDisabler disabler; auto& zone = *region.zone; for (size_t i = 0; i < zone.m_pages.size(); ++i) { auto laddr = region.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(laddr); pte.setPhysicalPageBase(zone.m_pages[i].get()); pte.setPresent(true); pte.setWritable(true); pte.setUserAllowed(!task.isRing0()); flushTLB(laddr); //kprintf("MM: >> Mapped L%x => P%x <<\n", laddr, zone.m_pages[i].get()); } return true; } bool MemoryManager::mapRegionsForTask(Task& task) { ASSERT_INTERRUPTS_DISABLED(); for (auto& region : task.m_regions) { if (!mapRegion(task, *region)) return false; } for (auto& subregion : task.m_subregions) { if (!mapSubregion(task, *subregion)) return false; } return true; } bool copyToZone(Zone& zone, const void* data, size_t size) { if (zone.size() < size) { kprintf("copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size()); return false; } InterruptDisabler disabler; auto* dataptr = (const byte*)data; size_t remaining = size; for (size_t i = 0; i < zone.m_pages.size(); ++i) { byte* dest = MM.quickMapOnePage(zone.m_pages[i]); kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining)); memcpy(dest, dataptr, min(PAGE_SIZE, remaining)); dataptr += PAGE_SIZE; remaining -= PAGE_SIZE; } return true; }