/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_heap_ctors; extern ctor_func_t end_heap_ctors; extern ctor_func_t start_ctors; extern ctor_func_t end_ctors; extern u32 __stack_chk_guard; u32 __stack_chk_guard; namespace Kernel { [[noreturn]] static void init_stage2(); static void setup_serial_debug(); // boot.S expects these functions precisely this this. We declare them here // to ensure the signatures don't accidentally change. extern "C" void init_finished(u32 cpu); extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info); extern "C" [[noreturn]] void init(); VirtualConsole* tty0; static Processor s_bsp_processor; // global but let's keep it "private" // SerenityOS Kernel C++ entry point :^) // // This is where C++ execution begins, after boot.S transfers control here. // // The purpose of init() is to start multi-tasking. It does the bare minimum // amount of work needed to start the scheduler. // // Once multi-tasking is ready, we spawn a new thread that starts in the // init_stage2() function. Initialization continues there. extern "C" [[noreturn]] void init() { setup_serial_debug(); s_bsp_processor.early_initialize(0); // Invoke the constructors needed for the kernel heap for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++) (*ctor)(); kmalloc_init(); slab_alloc_init(); s_bsp_processor.initialize(0); CommandLine::initialize(reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->cmdline))); MemoryManager::initialize(0); // Invoke all static global constructors in the kernel. // Note that we want to do this as early as possible. for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++) (*ctor)(); APIC::initialize(); InterruptManagement::initialize(); ACPI::initialize(); VFS::initialize(); KeyboardDevice::initialize(); PS2MouseDevice::create(); Console::initialize(); klog() << "Starting SerenityOS..."; __stack_chk_guard = get_fast_random(); TimeManagement::initialize(); NullDevice::initialize(); if (!get_serial_debug()) new SerialDevice(SERIAL_COM1_ADDR, 64); new SerialDevice(SERIAL_COM2_ADDR, 65); new SerialDevice(SERIAL_COM3_ADDR, 66); new SerialDevice(SERIAL_COM4_ADDR, 67); VirtualConsole::initialize(); tty0 = new VirtualConsole(0); for (unsigned i = 1; i < s_max_virtual_consoles; i++) { new VirtualConsole(i); } VirtualConsole::switch_to(0); Process::initialize(); Scheduler::initialize(); Thread* init_stage2_thread = nullptr; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2); Scheduler::start(); ASSERT_NOT_REACHED(); } // // This is where C++ execution begins for APs, after boot.S transfers control here. // // The purpose of init_ap() is to initialize APs for multi-tasking. // extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info) { processor_info->early_initialize(cpu); processor_info->initialize(cpu); MemoryManager::initialize(cpu); Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu)); Scheduler::start(); ASSERT_NOT_REACHED(); } // // This method is called once a CPU enters the scheduler and its idle thread // At this point the initial boot stack can be freed // extern "C" void init_finished(u32 cpu) { if (cpu == 0) { // TODO: we can reuse the boot stack, maybe for kmalloc()? } else { APIC::the().init_finished(cpu); } } void init_stage2() { if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) { // We can't start the APs until we have a scheduler up and running. // We need to be able to process ICI messages, otherwise another // core may send too many and end up deadlocking once the pool is // exhausted APIC::the().boot_aps(); } SyncTask::spawn(); FinalizerTask::spawn(); PCI::initialize(); bool text_mode = kernel_command_line().lookup("boot_mode").value_or("graphical") == "text"; if (text_mode) { dbg() << "Text mode enabled"; } else { bool bxvga_found = false; PCI::enumerate([&](const PCI::Address&, PCI::ID id) { if ((id.vendor_id == 0x1234 && id.device_id == 0x1111) || (id.vendor_id == 0x80ee && id.device_id == 0xbeef)) bxvga_found = true; }); if (bxvga_found) { BXVGADevice::initialize(); } else { if (multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB || multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT) { new MBVGADevice( PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)), multiboot_info_ptr->framebuffer_pitch, multiboot_info_ptr->framebuffer_width, multiboot_info_ptr->framebuffer_height); } else { BXVGADevice::initialize(); } } } E1000NetworkAdapter::detect(); RTL8139NetworkAdapter::detect(); LoopbackAdapter::the(); Syscall::initialize(); new ZeroDevice; new FullDevice; new RandomDevice; PTYMultiplexer::initialize(); new SB16; bool force_pio = kernel_command_line().contains("force_pio"); auto root = kernel_command_line().lookup("root").value_or("/dev/hda"); if (!root.starts_with("/dev/hda")) { klog() << "init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)"; Processor::halt(); } auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio); NonnullRefPtr root_dev = *pata0->master_device(); root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda")); if (root.length()) { auto partition_number = root.to_uint(); if (!partition_number.has_value()) { klog() << "init_stage2: couldn't parse partition number from root kernel parameter"; Processor::halt(); } MBRPartitionTable mbr(root_dev); if (!mbr.initialize()) { klog() << "init_stage2: couldn't read MBR from disk"; Processor::halt(); } if (mbr.is_protective_mbr()) { dbg() << "GPT Partitioned Storage Detected!"; GPTPartitionTable gpt(root_dev); if (!gpt.initialize()) { klog() << "init_stage2: couldn't read GPT from disk"; Processor::halt(); } auto partition = gpt.partition(partition_number.value()); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number.value(); Processor::halt(); } root_dev = *partition; } else { dbg() << "MBR Partitioned Storage Detected!"; if (mbr.contains_ebr()) { EBRPartitionTable ebr(root_dev); if (!ebr.initialize()) { klog() << "init_stage2: couldn't read EBR from disk"; Processor::halt(); } auto partition = ebr.partition(partition_number.value()); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number.value(); Processor::halt(); } root_dev = *partition; } else { if (partition_number.value() < 1 || partition_number.value() > 4) { klog() << "init_stage2: invalid partition number " << partition_number.value() << "; expected 1 to 4"; Processor::halt(); } auto partition = mbr.partition(partition_number.value()); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number.value(); Processor::halt(); } root_dev = *partition; } } } auto e2fs = Ext2FS::create(*FileDescription::create(root_dev)); if (!e2fs->initialize()) { klog() << "init_stage2: couldn't open root filesystem"; Processor::halt(); } if (!VFS::the().mount_root(e2fs)) { klog() << "VFS::mount_root failed"; Processor::halt(); } Process::current()->set_root_directory(VFS::the().root_custody()); load_kernel_symbol_table(); int error; // FIXME: It would be nicer to set the mode from userspace. tty0->set_graphical(!text_mode); Thread* thread = nullptr; auto userspace_init = kernel_command_line().lookup("init").value_or("/bin/SystemServer"); Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, {}, {}, tty0); if (error != 0) { klog() << "init_stage2: error spawning SystemServer: " << error; Processor::halt(); } thread->set_priority(THREAD_PRIORITY_HIGH); NetworkTask::spawn(); Process::current()->sys$exit(0); ASSERT_NOT_REACHED(); } void setup_serial_debug() { // serial_debug will output all the klog() and dbg() data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. // // note: it must be the first option in the boot cmdline. u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline); if (cmdline && StringView(reinterpret_cast(cmdline)).starts_with("serial_debug")) set_serial_debug(true); } extern "C" { multiboot_info_t* multiboot_info_ptr; } // Define some Itanium C++ ABI methods to stop the linker from complaining. // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); }