/* * Copyright (c) 2018-2021, Andreas Kling * Copyright (c) 2021-2022, Sam Atkins * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include namespace Gfx { template T abst(T value) { return value < 0 ? -value : value; } template class Rect { public: Rect() = default; Rect(T x, T y, T width, T height) : m_location(x, y) , m_size(width, height) { } template Rect(U x, U y, U width, U height) : m_location(x, y) , m_size(width, height) { } Rect(Point const& location, Size const& size) : m_location(location) , m_size(size) { } template Rect(Point const& location, Size const& size) : m_location(location) , m_size(size) { } template explicit Rect(Rect const& other) : m_location(other.location()) , m_size(other.size()) { } [[nodiscard]] ALWAYS_INLINE T x() const { return location().x(); } [[nodiscard]] ALWAYS_INLINE T y() const { return location().y(); } [[nodiscard]] ALWAYS_INLINE T width() const { return m_size.width(); } [[nodiscard]] ALWAYS_INLINE T height() const { return m_size.height(); } ALWAYS_INLINE void set_x(T x) { m_location.set_x(x); } ALWAYS_INLINE void set_y(T y) { m_location.set_y(y); } ALWAYS_INLINE void set_width(T width) { m_size.set_width(width); } ALWAYS_INLINE void set_height(T height) { m_size.set_height(height); } [[nodiscard]] ALWAYS_INLINE Point const& location() const { return m_location; } [[nodiscard]] ALWAYS_INLINE Size const& size() const { return m_size; } [[nodiscard]] ALWAYS_INLINE bool is_null() const { return width() == 0 && height() == 0; } [[nodiscard]] ALWAYS_INLINE bool is_empty() const { return width() <= 0 || height() <= 0; } ALWAYS_INLINE void translate_by(T dx, T dy) { m_location.translate_by(dx, dy); } ALWAYS_INLINE void translate_by(T dboth) { m_location.translate_by(dboth); } ALWAYS_INLINE void translate_by(Point const& delta) { m_location.translate_by(delta); } ALWAYS_INLINE void scale_by(T dx, T dy) { m_location.scale_by(dx, dy); m_size.scale_by(dx, dy); } ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); } ALWAYS_INLINE void scale_by(Point const& delta) { scale_by(delta.x(), delta.y()); } void transform_by(AffineTransform const& transform) { *this = transform.map(*this); } [[nodiscard]] Point center() const { return { x() + width() / 2, y() + height() / 2 }; } ALWAYS_INLINE void set_location(Point const& location) { m_location = location; } ALWAYS_INLINE void set_size(Size const& size) { m_size = size; } void set_size(T width, T height) { m_size.set_width(width); m_size.set_height(height); } void inflate(T w, T h) { set_x(x() - w / 2); set_width(width() + w); set_y(y() - h / 2); set_height(height() + h); } void inflate(T top, T right, T bottom, T left) { set_x(x() - left); set_width(width() + left + right); set_y(y() - top); set_height(height() + top + bottom); } void inflate(Size const& size) { set_x(x() - size.width() / 2); set_width(width() + size.width()); set_y(y() - size.height() / 2); set_height(height() + size.height()); } void shrink(T w, T h) { set_x(x() + w / 2); set_width(width() - w); set_y(y() + h / 2); set_height(height() - h); } void shrink(T top, T right, T bottom, T left) { set_x(x() + left); set_width(width() - (left + right)); set_y(y() + top); set_height(height() - (top + bottom)); } void shrink(Size const& size) { set_x(x() + size.width() / 2); set_width(width() - size.width()); set_y(y() + size.height() / 2); set_height(height() - size.height()); } [[nodiscard]] Rect translated(T dx, T dy) const { Rect rect = *this; rect.translate_by(dx, dy); return rect; } [[nodiscard]] Rect translated(Point const& delta) const { Rect rect = *this; rect.translate_by(delta); return rect; } [[nodiscard]] Rect scaled(T sx, T sy) const { Rect rect = *this; rect.scale_by(sx, sy); return rect; } [[nodiscard]] Rect scaled(Point const& s) const { Rect rect = *this; rect.scale_by(s); return rect; } [[nodiscard]] Rect transformed(AffineTransform const& transform) const { Rect rect = *this; rect.transform_by(transform); return rect; } [[nodiscard]] Rect shrunken(T w, T h) const { Rect rect = *this; rect.shrink(w, h); return rect; } [[nodiscard]] Rect shrunken(T top, T right, T bottom, T left) const { Rect rect = *this; rect.shrink(top, right, bottom, left); return rect; } [[nodiscard]] Rect shrunken(Size const& size) const { Rect rect = *this; rect.shrink(size); return rect; } [[nodiscard]] Rect inflated(T w, T h) const { Rect rect = *this; rect.inflate(w, h); return rect; } [[nodiscard]] Rect inflated(T top, T right, T bottom, T left) const { Rect rect = *this; rect.inflate(top, right, bottom, left); return rect; } [[nodiscard]] Rect inflated(Size const& size) const { Rect rect = *this; rect.inflate(size); return rect; } Rect take_from_right(T w) { if (w > width()) w = width(); Rect rect = *this; set_width(width() - w); rect.set_x(x() + width()); rect.set_width(w); return rect; } Rect take_from_left(T w) { if (w > width()) w = width(); Rect rect = *this; set_x(x() + w); set_width(width() - w); rect.set_width(w); return rect; } Rect take_from_top(T h) { if (h > height()) h = height(); Rect rect = *this; set_y(y() + h); set_height(height() - h); rect.set_height(h); return rect; } Rect take_from_bottom(T h) { if (h > height()) h = height(); Rect rect = *this; set_height(height() - h); rect.set_y(y() + height()); rect.set_height(h); return rect; } [[nodiscard]] bool contains_vertically(T y) const { return y >= top() && y <= bottom(); } [[nodiscard]] bool contains_horizontally(T x) const { return x >= left() && x <= right(); } [[nodiscard]] bool contains(T x, T y) const { return x >= m_location.x() && x <= right() && y >= m_location.y() && y <= bottom(); } [[nodiscard]] ALWAYS_INLINE bool contains(Point const& point) const { return contains(point.x(), point.y()); } [[nodiscard]] bool contains(Rect const& other) const { return left() <= other.left() && right() >= other.right() && top() <= other.top() && bottom() >= other.bottom(); } template [[nodiscard]] bool contains(Container const& others) const { bool have_any = false; for (auto const& other : others) { if (!contains(other)) return false; have_any = true; } return have_any; } [[nodiscard]] ALWAYS_INLINE T primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); } ALWAYS_INLINE void set_primary_offset_for_orientation(Orientation orientation, T value) { m_location.set_primary_offset_for_orientation(orientation, value); } [[nodiscard]] ALWAYS_INLINE T secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); } ALWAYS_INLINE void set_secondary_offset_for_orientation(Orientation orientation, T value) { m_location.set_secondary_offset_for_orientation(orientation, value); } [[nodiscard]] ALWAYS_INLINE T primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); } [[nodiscard]] ALWAYS_INLINE T secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); } ALWAYS_INLINE void set_primary_size_for_orientation(Orientation orientation, T value) { m_size.set_primary_size_for_orientation(orientation, value); } ALWAYS_INLINE void set_secondary_size_for_orientation(Orientation orientation, T value) { m_size.set_secondary_size_for_orientation(orientation, value); } [[nodiscard]] T first_edge_for_orientation(Orientation orientation) const { if (orientation == Orientation::Vertical) return top(); return left(); } [[nodiscard]] T last_edge_for_orientation(Orientation orientation) const { if (orientation == Orientation::Vertical) return bottom(); return right(); } [[nodiscard]] ALWAYS_INLINE T left() const { return x(); } [[nodiscard]] ALWAYS_INLINE T right() const { return x() + width() - 1; } [[nodiscard]] ALWAYS_INLINE T top() const { return y(); } [[nodiscard]] ALWAYS_INLINE T bottom() const { return y() + height() - 1; } ALWAYS_INLINE void set_left(T left) { set_x(left); } ALWAYS_INLINE void set_top(T top) { set_y(top); } ALWAYS_INLINE void set_right(T right) { set_width(right - x() + 1); } ALWAYS_INLINE void set_bottom(T bottom) { set_height(bottom - y() + 1); } void set_right_without_resize(T new_right) { auto delta = new_right - right(); translate_by(delta, 0); } void set_bottom_without_resize(T new_bottom) { auto delta = new_bottom - bottom(); translate_by(0, delta); } [[nodiscard]] bool intersects_vertically(Rect const& other) const { return top() <= other.bottom() && other.top() <= bottom(); } [[nodiscard]] bool intersects_horizontally(Rect const& other) const { return left() <= other.right() && other.left() <= right(); } [[nodiscard]] bool intersects(Rect const& other) const { return left() <= other.right() && other.left() <= right() && top() <= other.bottom() && other.top() <= bottom(); } template [[nodiscard]] bool intersects(Container const& others) const { for (auto const& other : others) { if (intersects(other)) return true; } return false; } template IterationDecision for_each_intersected(Container const& others, Function f) const { if (is_empty()) return IterationDecision::Continue; for (auto const& other : others) { auto intersected_rect = intersected(other); if (!intersected_rect.is_empty()) { IterationDecision decision = f(intersected_rect); if (decision != IterationDecision::Continue) return decision; } } return IterationDecision::Continue; } [[nodiscard]] Vector, 4> shatter(Rect const& hammer) const { Vector, 4> pieces; if (!intersects(hammer)) { pieces.unchecked_append(*this); return pieces; } Rect top_shard { x(), y(), width(), hammer.y() - y() }; Rect bottom_shard { x(), hammer.y() + hammer.height(), width(), (y() + height()) - (hammer.y() + hammer.height()) }; Rect left_shard { x(), max(hammer.y(), y()), hammer.x() - x(), min((hammer.y() + hammer.height()), (y() + height())) - max(hammer.y(), y()) }; Rect right_shard { hammer.x() + hammer.width(), max(hammer.y(), y()), right() - hammer.right(), min((hammer.y() + hammer.height()), (y() + height())) - max(hammer.y(), y()) }; if (!top_shard.is_empty()) pieces.unchecked_append(top_shard); if (!bottom_shard.is_empty()) pieces.unchecked_append(bottom_shard); if (!left_shard.is_empty()) pieces.unchecked_append(left_shard); if (!right_shard.is_empty()) pieces.unchecked_append(right_shard); return pieces; } template [[nodiscard]] bool operator==(Rect const& other) const { return location() == other.location() && size() == other.size(); } [[nodiscard]] Rect operator*(T factor) const { return { m_location * factor, m_size * factor }; } Rect& operator*=(T factor) { m_location *= factor; m_size *= factor; return *this; } void intersect(Rect const& other) { T l = max(left(), other.left()); T r = min(right(), other.right()); T t = max(top(), other.top()); T b = min(bottom(), other.bottom()); if (l > r || t > b) { m_location = {}; m_size = {}; return; } m_location.set_x(l); m_location.set_y(t); m_size.set_width((r - l) + 1); m_size.set_height((b - t) + 1); } [[nodiscard]] static Rect centered_on(Point const& center, Size const& size) { return { { center.x() - size.width() / 2, center.y() - size.height() / 2 }, size }; } [[nodiscard]] static Rect from_two_points(Point const& a, Point const& b) { return { min(a.x(), b.x()), min(a.y(), b.y()), abst(a.x() - b.x()), abst(a.y() - b.y()) }; } [[nodiscard]] static Rect intersection(Rect const& a, Rect const& b) { Rect r = a; r.intersect(b); return r; } [[nodiscard]] ALWAYS_INLINE Rect intersected(Rect const& other) const { return intersection(*this, other); } [[nodiscard]] Vector, 2> intersected(Line const& line) const { if (is_empty()) return {}; Vector, 2> points; if (auto point = line.intersected({ top_left(), top_right() }); point.has_value()) points.append({ point.value().x(), y() }); if (auto point = line.intersected({ bottom_left(), bottom_right() }); point.has_value()) { points.append({ point.value().x(), bottom() }); if (points.size() == 2) return points; } if (height() > 2) { if (auto point = line.intersected({ { x(), y() + 1 }, { x(), bottom() - 1 } }); point.has_value()) { points.append({ x(), point.value().y() }); if (points.size() == 2) return points; } if (auto point = line.intersected({ { right(), y() + 1 }, { right(), bottom() - 1 } }); point.has_value()) points.append({ right(), point.value().y() }); } return points; } [[nodiscard]] float center_point_distance_to(Rect const& other) const { return Line { center(), other.center() }.length(); } [[nodiscard]] Vector, 2> closest_outside_center_points(Rect const& other) const { if (intersects(other)) return {}; Line centers_line { center(), other.center() }; auto points_this = intersected(centers_line); VERIFY(points_this.size() == 1); auto points_other = other.intersected(centers_line); VERIFY(points_other.size() == 1); return { points_this[0], points_other[0] }; } [[nodiscard]] float outside_center_point_distance_to(Rect const& other) const { auto points = closest_outside_center_points(other); if (points.is_empty()) return 0.0; return Line { points[0], points[0] }.length(); } [[nodiscard]] Rect constrained_to(Rect const& constrain_rect) const { if (constrain_rect.contains(*this)) return *this; T move_x = 0, move_y = 0; if (right() > constrain_rect.right()) move_x = constrain_rect.right() - right(); if (bottom() > constrain_rect.bottom()) move_y = constrain_rect.bottom() - bottom(); if (x() < constrain_rect.x()) move_x = x() - constrain_rect.x(); if (y() < constrain_rect.y()) move_y = y() - constrain_rect.y(); auto rect = *this; if (move_x != 0 || move_y != 0) rect.translate_by(move_x, move_y); return rect; } [[nodiscard]] Rect aligned_within(Size const& rect_size, Point const& align_at, TextAlignment alignment = TextAlignment::Center) const { if (rect_size.is_empty()) return {}; if (!size().contains(rect_size)) return {}; if (!contains(align_at)) return {}; Rect rect; switch (alignment) { case TextAlignment::TopCenter: rect = { { align_at.x() - rect_size.width() / 2, align_at.y() }, rect_size }; break; case TextAlignment::TopLeft: rect = { align_at, rect_size }; break; case TextAlignment::TopRight: rect = { { align_at.x() - rect_size.width(), align_at.y() }, rect_size }; break; case TextAlignment::CenterLeft: rect = { { align_at.x(), align_at.y() - rect_size.height() / 2 }, rect_size }; break; case TextAlignment::Center: rect = { { align_at.x() - rect_size.width() / 2, align_at.y() - rect_size.height() / 2 }, rect_size }; break; case TextAlignment::CenterRight: rect = { { align_at.x() - rect_size.width() / 2, align_at.y() }, rect_size }; break; case TextAlignment::BottomCenter: rect = { { align_at.x() - rect_size.width() / 2, align_at.y() - rect_size.width() }, rect_size }; break; case TextAlignment::BottomLeft: rect = { { align_at.x(), align_at.y() - rect_size.width() }, rect_size }; break; case TextAlignment::BottomRight: rect = { { align_at.x() - rect_size.width(), align_at.y() - rect_size.width() }, rect_size }; break; } return rect.constrained_to(*this); } [[nodiscard]] Point closest_to(Point const& point) const { if (is_empty()) return {}; Optional> closest_point; float closest_distance = 0.0; auto check_distance = [&](Line const& line) { auto point_on_line = line.closest_to(point); auto distance = Line { point_on_line, point }.length(); if (!closest_point.has_value() || distance < closest_distance) { closest_point = point_on_line; closest_distance = distance; } }; check_distance({ top_left(), top_right() }); check_distance({ bottom_left(), bottom_right() }); if (height() > 2) { check_distance({ { x(), y() + 1 }, { x(), bottom() - 1 } }); check_distance({ { right(), y() + 1 }, { right(), bottom() - 1 } }); } VERIFY(closest_point.has_value()); VERIFY(side(closest_point.value()) != Side::None); return closest_point.value(); } class RelativeLocation { friend class Rect; RelativeLocation(Rect const& base_rect, Rect const& other_rect) { if (base_rect.is_empty() || other_rect.is_empty()) return; auto parts = base_rect.shatter(other_rect); for (auto& part : parts) { if (part.x() < other_rect.x()) { if (part.y() < other_rect.y()) m_top_left = true; if ((part.y() >= other_rect.y() && part.y() < other_rect.bottom()) || (part.y() <= other_rect.bottom() && part.bottom() > other_rect.y())) m_left = true; if (part.y() >= other_rect.bottom() || part.bottom() > other_rect.y()) m_bottom_left = true; } if (part.x() >= other_rect.x() || part.right() > other_rect.x()) { if (part.y() < other_rect.y()) m_top = true; if (part.y() >= other_rect.bottom() || part.bottom() > other_rect.bottom()) m_bottom = true; } if (part.x() >= other_rect.right() || part.right() > other_rect.right()) { if (part.y() < other_rect.y()) m_top_right = true; if ((part.y() >= other_rect.y() && part.y() < other_rect.bottom()) || (part.y() <= other_rect.bottom() && part.bottom() > other_rect.y())) m_right = true; if (part.y() >= other_rect.bottom() || part.bottom() > other_rect.y()) m_bottom_right = true; } } } public: RelativeLocation() = default; bool top_left() const { return m_top_left; } bool top() const { return m_top; } bool top_right() const { return m_top_right; } bool left() const { return m_left; } bool right() const { return m_right; } bool bottom_left() const { return m_bottom_left; } bool bottom() const { return m_bottom; } bool bottom_right() const { return m_bottom_right; } bool anywhere_above() const { return m_top_left || m_top || m_top_right; } bool anywhere_below() const { return m_bottom_left || m_bottom || m_bottom_right; } bool anywhere_left() const { return m_top_left || m_left || m_bottom_left; } bool anywhere_right() const { return m_top_right || m_right || m_bottom_right; } private: bool m_top_left : 1 { false }; bool m_top : 1 { false }; bool m_top_right : 1 { false }; bool m_left : 1 { false }; bool m_right : 1 { false }; bool m_bottom_left : 1 { false }; bool m_bottom : 1 { false }; bool m_bottom_right : 1 { false }; }; [[nodiscard]] RelativeLocation relative_location_to(Rect const& other) const { return RelativeLocation(*this, other); } enum class Side { None = 0, Left, Top, Right, Bottom }; [[nodiscard]] Side side(Point const& point) const { if (is_empty()) return Side::None; if (point.y() == y() || point.y() == bottom()) return (point.x() >= x() && point.x() <= right()) ? (point.y() == y() ? Side::Top : Side::Bottom) : Side::None; if (point.x() == x() || point.x() == right()) return (point.y() > y() && point.y() < bottom()) ? (point.x() == x() ? Side::Left : Side::Right) : Side::None; return Side::None; } [[nodiscard]] Rect rect_on_side(Side side, Rect const& other) const { switch (side) { case Side::None: break; case Side::Left: // Return the area in other that is to the left of this rect if (other.x() < x()) { if (other.right() >= x()) return { other.location(), { x() - other.x(), other.height() } }; else return other; } break; case Side::Top: // Return the area in other that is above this rect if (other.y() < y()) { if (other.bottom() >= y()) return { other.location(), { other.width(), y() - other.y() } }; else return other; } break; case Side::Right: // Return the area in other that is to the right of this rect if (other.right() >= x()) { if (other.x() <= right()) return { { right() + 1, other.y() }, { other.width() - (right() - other.x()), other.height() } }; else return other; } break; case Side::Bottom: // Return the area in other that is below this rect if (other.bottom() >= y()) { if (other.y() <= bottom()) return { { other.x(), bottom() + 1 }, { other.width(), other.height() - (bottom() - other.y()) } }; else return other; } break; } return {}; } template static bool disperse(Container& rects) { auto has_intersecting = [&]() { for (auto& rect : rects) { for (auto& other_rect : rects) { if (&rect == &other_rect) continue; if (rect.intersects(other_rect)) return true; } } return false; }; if (!has_intersecting()) return false; auto calc_delta = [&](Rect const& rect) -> Point { auto rect_center = rect.center(); Point center_sum; for (auto& other_rect : rects) { if (&other_rect == &rect) continue; if (rect.intersects(other_rect)) center_sum += rect_center - other_rect.center(); } double m = sqrt((double)center_sum.x() * (double)center_sum.x() + (double)center_sum.y() * (double)center_sum.y()); if (m != 0.0) return { (double)center_sum.x() / m + 0.5, (double)center_sum.y() / m + 0.5 }; return {}; }; Vector, 8> deltas; do { bool changes = false; deltas.clear_with_capacity(); for (auto& rect : rects) { auto delta = calc_delta(rect); if (!delta.is_null()) changes = true; deltas.append(delta); } // TODO: If we have no changes we would loop infinitely! // Figure out some way to resolve this. Maybe randomly moving an intersecting rect? VERIFY(changes); size_t i = 0; for (auto& rect : rects) rect.translate_by(deltas[i++]); } while (has_intersecting()); return true; } [[nodiscard]] bool is_adjacent(Rect const& other) const { if (is_empty() || other.is_empty()) return false; if (intersects(other)) return false; if (other.x() + other.width() == x() || other.x() == x() + width()) return max(top(), other.top()) <= min(bottom(), other.bottom()); if (other.y() + other.height() == y() || other.y() == y() + height()) return max(left(), other.left()) <= min(right(), other.right()); return false; } [[nodiscard]] static Rect centered_at(Point const& point, Size const& size) { return { { point.x() - size.width() / 2, point.y() - size.height() / 2 }, size }; } [[nodiscard]] Rect united(Rect const& other) const { if (is_null()) return other; if (other.is_null()) return *this; Rect rect; rect.set_left(min(left(), other.left())); rect.set_top(min(top(), other.top())); rect.set_right(max(right(), other.right())); rect.set_bottom(max(bottom(), other.bottom())); return rect; } [[nodiscard]] Point top_left() const { return { left(), top() }; } [[nodiscard]] Point top_right() const { return { right(), top() }; } [[nodiscard]] Point bottom_left() const { return { left(), bottom() }; } [[nodiscard]] Point bottom_right() const { return { right(), bottom() }; } void align_within(Rect const& other, TextAlignment alignment) { switch (alignment) { case TextAlignment::Center: center_within(other); return; case TextAlignment::TopCenter: set_x(other.x() + other.width() / 2); return; case TextAlignment::TopLeft: set_location(other.location()); return; case TextAlignment::TopRight: set_x(other.x() + other.width() - width()); set_y(other.y()); return; case TextAlignment::CenterLeft: set_x(other.x()); center_vertically_within(other); return; case TextAlignment::CenterRight: set_x(other.x() + other.width() - width()); center_vertically_within(other); return; case TextAlignment::BottomCenter: set_x(other.x() + other.width() / 2); set_y(other.y() + other.height() - height()); return; case TextAlignment::BottomLeft: set_x(other.x()); set_y(other.y() + other.height() - height()); return; case TextAlignment::BottomRight: set_x(other.x() + other.width() - width()); set_y(other.y() + other.height() - height()); return; } } void center_within(Rect const& other) { center_horizontally_within(other); center_vertically_within(other); } [[nodiscard]] Rect centered_within(Rect const& other) const { Rect rect { *this }; rect.center_horizontally_within(other); rect.center_vertically_within(other); return rect; } void center_horizontally_within(Rect const& other) { set_x(other.center().x() - width() / 2); } void center_vertically_within(Rect const& other) { set_y(other.center().y() - height() / 2); } template requires(!IsSame) [[nodiscard]] ALWAYS_INLINE Rect to_type() const { return Rect(*this); } template [[nodiscard]] ALWAYS_INLINE Rect to_rounded() const { // FIXME: We may get away with `rint[lf]?()` here. // This would even give us some more control of these internals, // while the break-tie algorithm does not really matter if constexpr (IsSame) { return { static_cast(roundf(x())), static_cast(roundf(y())), static_cast(roundf(width())), static_cast(roundf(height())), }; } if constexpr (IsSame) { return { static_cast(round(x())), static_cast(round(y())), static_cast(round(width())), static_cast(round(height())), }; } return { static_cast(roundl(x())), static_cast(roundl(y())), static_cast(roundl(width())), static_cast(roundl(height())), }; } template ALWAYS_INLINE Rect to_rounded() const { return { round_to(x()), round_to(y()), round_to(width()), round_to(height()), }; } [[nodiscard]] DeprecatedString to_deprecated_string() const; private: Point m_location; Size m_size; }; using IntRect = Rect; using FloatRect = Rect; [[nodiscard]] ALWAYS_INLINE IntRect enclosing_int_rect(FloatRect const& float_rect) { int x1 = floorf(float_rect.x()); int y1 = floorf(float_rect.y()); int x2 = ceilf(float_rect.x() + float_rect.width()); int y2 = ceilf(float_rect.y() + float_rect.height()); return Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 }); } } namespace AK { template struct Formatter> : Formatter { ErrorOr format(FormatBuilder& builder, Gfx::Rect const& value) { return Formatter::format(builder, "[{},{} {}x{}]"sv, value.x(), value.y(), value.width(), value.height()); } }; } namespace IPC { template<> bool encode(Encoder&, Gfx::IntRect const&); template<> ErrorOr decode(Decoder&); }