/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { ProtectedValue& hostname(); Time kgettimeofday(); #define ENUMERATE_PLEDGE_PROMISES \ __ENUMERATE_PLEDGE_PROMISE(stdio) \ __ENUMERATE_PLEDGE_PROMISE(rpath) \ __ENUMERATE_PLEDGE_PROMISE(wpath) \ __ENUMERATE_PLEDGE_PROMISE(cpath) \ __ENUMERATE_PLEDGE_PROMISE(dpath) \ __ENUMERATE_PLEDGE_PROMISE(inet) \ __ENUMERATE_PLEDGE_PROMISE(id) \ __ENUMERATE_PLEDGE_PROMISE(proc) \ __ENUMERATE_PLEDGE_PROMISE(ptrace) \ __ENUMERATE_PLEDGE_PROMISE(exec) \ __ENUMERATE_PLEDGE_PROMISE(unix) \ __ENUMERATE_PLEDGE_PROMISE(recvfd) \ __ENUMERATE_PLEDGE_PROMISE(sendfd) \ __ENUMERATE_PLEDGE_PROMISE(fattr) \ __ENUMERATE_PLEDGE_PROMISE(tty) \ __ENUMERATE_PLEDGE_PROMISE(chown) \ __ENUMERATE_PLEDGE_PROMISE(chroot) \ __ENUMERATE_PLEDGE_PROMISE(thread) \ __ENUMERATE_PLEDGE_PROMISE(video) \ __ENUMERATE_PLEDGE_PROMISE(accept) \ __ENUMERATE_PLEDGE_PROMISE(settime) \ __ENUMERATE_PLEDGE_PROMISE(sigaction) \ __ENUMERATE_PLEDGE_PROMISE(setkeymap) \ __ENUMERATE_PLEDGE_PROMISE(prot_exec) \ __ENUMERATE_PLEDGE_PROMISE(map_fixed) \ __ENUMERATE_PLEDGE_PROMISE(getkeymap) enum class Pledge : u32 { #define __ENUMERATE_PLEDGE_PROMISE(x) x, ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE }; enum class VeilState { None, Dropped, Locked, }; typedef HashMap> FutexQueues; struct LoadResult; class ProtectedProcessBase { protected: ProcessID m_pid { 0 }; ProcessID m_ppid { 0 }; SessionID m_sid { 0 }; uid_t m_euid { 0 }; gid_t m_egid { 0 }; uid_t m_uid { 0 }; gid_t m_gid { 0 }; uid_t m_suid { 0 }; gid_t m_sgid { 0 }; Vector m_extra_gids; bool m_dumpable { false }; Atomic m_has_promises { false }; Atomic m_promises { 0 }; Atomic m_has_execpromises { false }; Atomic m_execpromises { 0 }; mode_t m_umask { 022 }; VirtualAddress m_signal_trampoline; Atomic m_thread_count { 0 }; u8 m_termination_status { 0 }; u8 m_termination_signal { 0 }; }; class ProcessBase : public ProtectedProcessBase { protected: // Without the alignas specifier here the compiler places this class into // the parent class' padding which then causes the members for the RefCounted // class to be placed within the first page of the Process class. alignas(ProtectedProcessBase) u8 m_process_base_padding[PAGE_SIZE - sizeof(ProtectedProcessBase)]; }; static_assert(sizeof(ProcessBase) == PAGE_SIZE); class Process : public ProcessBase , public RefCounted , public Weakable { AK_MAKE_NONCOPYABLE(Process); AK_MAKE_NONMOVABLE(Process); MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE); friend class Thread; friend class CoreDump; friend class ProcFSProcessFileDescriptions; // Helper class to temporarily unprotect a process's protected data so you can write to it. class ProtectedDataMutationScope { public: explicit ProtectedDataMutationScope(Process& process) : m_process(process) { m_process.unprotect_data(); } ~ProtectedDataMutationScope() { m_process.protect_data(); } private: Process& m_process; }; enum class State : u8 { Running = 0, Dying, Dead }; public: inline static Process* current() { auto current_thread = Processor::current_thread(); return current_thread ? ¤t_thread->process() : nullptr; } template static void kernel_process_trampoline(void* data) { EntryFunction* func = reinterpret_cast(data); (*func)(); delete func; } enum class RegisterProcess { No, Yes }; template static RefPtr create_kernel_process(RefPtr& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes) { auto* entry_func = new EntryFunction(move(entry)); return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline, entry_func, affinity, do_register); } static RefPtr create_kernel_process(RefPtr& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes); static RefPtr create_user_process(RefPtr& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector&& arguments = Vector(), Vector&& environment = Vector(), TTY* = nullptr); static void register_new(Process&); ~Process(); static NonnullRefPtrVector all_processes(); RefPtr create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true); bool is_profiling() const { return m_profiling; } void set_profiling(bool profiling) { m_profiling = profiling; } bool should_core_dump() const { return m_should_dump_core; } void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; } bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; } bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; } bool is_stopped() const { return m_is_stopped; } bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); } bool is_kernel_process() const { return m_is_kernel_process; } bool is_user_process() const { return !m_is_kernel_process; } static RefPtr from_pid(ProcessID); static SessionID get_sid_from_pgid(ProcessGroupID pgid); const String& name() const { return m_name; } ProcessID pid() const { return m_pid; } SessionID sid() const { return m_sid; } bool is_session_leader() const { return m_sid.value() == m_pid.value(); } ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; } bool is_group_leader() const { return pgid().value() == m_pid.value(); } const Vector& extra_gids() const { return m_extra_gids; } uid_t euid() const { return m_euid; } gid_t egid() const { return m_egid; } uid_t uid() const { return m_uid; } gid_t gid() const { return m_gid; } uid_t suid() const { return m_suid; } gid_t sgid() const { return m_sgid; } ProcessID ppid() const { return m_ppid; } bool is_dumpable() const { return m_dumpable; } void set_dumpable(bool); mode_t umask() const { return m_umask; } bool in_group(gid_t) const; // Breakable iteration functions template Callback> static void for_each(Callback); template Callback> static void for_each_in_pgrp(ProcessGroupID, Callback); template Callback> void for_each_child(Callback); template Callback> IterationDecision for_each_thread(Callback); template Callback> IterationDecision for_each_thread(Callback callback) const; // Non-breakable iteration functions template Callback> static void for_each(Callback); template Callback> static void for_each_in_pgrp(ProcessGroupID, Callback); template Callback> void for_each_child(Callback); template Callback> IterationDecision for_each_thread(Callback); template Callback> IterationDecision for_each_thread(Callback callback) const; void die(); void finalize(); ThreadTracer* tracer() { return m_tracer.ptr(); } bool is_traced() const { return !!m_tracer; } KResult start_tracing_from(ProcessID tracer); void stop_tracing(); void tracer_trap(Thread&, const RegisterState&); KResultOr sys$emuctl(); KResultOr sys$yield(); KResultOr sys$sync(); KResultOr sys$beep(); KResultOr sys$get_process_name(Userspace buffer, size_t buffer_size); KResultOr sys$set_process_name(Userspace user_name, size_t user_name_length); KResultOr sys$create_inode_watcher(u32 flags); KResultOr sys$inode_watcher_add_watch(Userspace user_params); KResultOr sys$inode_watcher_remove_watch(int fd, int wd); KResultOr sys$dbgputch(u8); KResultOr sys$dbgputstr(Userspace, size_t); KResultOr sys$dump_backtrace(); KResultOr sys$gettid(); KResultOr sys$setsid(); KResultOr sys$getsid(pid_t); KResultOr sys$setpgid(pid_t pid, pid_t pgid); KResultOr sys$getpgrp(); KResultOr sys$getpgid(pid_t); KResultOr sys$getuid(); KResultOr sys$getgid(); KResultOr sys$geteuid(); KResultOr sys$getegid(); KResultOr sys$getpid(); KResultOr sys$getppid(); KResultOr sys$getresuid(Userspace, Userspace, Userspace); KResultOr sys$getresgid(Userspace, Userspace, Userspace); KResultOr sys$umask(mode_t); KResultOr sys$open(Userspace); KResultOr sys$close(int fd); KResultOr sys$read(int fd, Userspace, size_t); KResultOr sys$readv(int fd, Userspace iov, int iov_count); KResultOr sys$write(int fd, Userspace, size_t); KResultOr sys$writev(int fd, Userspace iov, int iov_count); KResultOr sys$fstat(int fd, Userspace); KResultOr sys$stat(Userspace); KResultOr sys$lseek(int fd, Userspace, int whence); KResultOr sys$ftruncate(int fd, Userspace); KResultOr sys$kill(pid_t pid_or_pgid, int sig); [[noreturn]] void sys$exit(int status); KResultOr sys$sigreturn(RegisterState& registers); KResultOr sys$waitid(Userspace); KResultOr sys$mmap(Userspace); KResultOr sys$mremap(Userspace); KResultOr sys$munmap(Userspace, size_t); KResultOr sys$set_mmap_name(Userspace); KResultOr sys$mprotect(Userspace, size_t, int prot); KResultOr sys$madvise(Userspace, size_t, int advice); KResultOr sys$msyscall(Userspace); KResultOr sys$purge(int mode); KResultOr sys$select(Userspace); KResultOr sys$poll(Userspace); KResultOr sys$get_dir_entries(int fd, Userspace, size_t); KResultOr sys$getcwd(Userspace, size_t); KResultOr sys$chdir(Userspace, size_t); KResultOr sys$fchdir(int fd); KResultOr sys$adjtime(Userspace, Userspace); KResultOr sys$gettimeofday(Userspace); KResultOr sys$clock_gettime(clockid_t, Userspace); KResultOr sys$clock_settime(clockid_t, Userspace); KResultOr sys$clock_nanosleep(Userspace); KResultOr sys$gethostname(Userspace, size_t); KResultOr sys$sethostname(Userspace, size_t); KResultOr sys$uname(Userspace); KResultOr sys$readlink(Userspace); KResultOr sys$ttyname(int fd, Userspace, size_t); KResultOr sys$ptsname(int fd, Userspace, size_t); KResultOr sys$fork(RegisterState&); KResultOr sys$execve(Userspace); KResultOr sys$dup2(int old_fd, int new_fd); KResultOr sys$sigaction(int signum, Userspace act, Userspace old_act); KResultOr sys$sigprocmask(int how, Userspace set, Userspace old_set); KResultOr sys$sigpending(Userspace); KResultOr sys$getgroups(size_t, Userspace); KResultOr sys$setgroups(size_t, Userspace); KResultOr sys$pipe(int pipefd[2], int flags); KResultOr sys$killpg(pid_t pgrp, int sig); KResultOr sys$seteuid(uid_t); KResultOr sys$setegid(gid_t); KResultOr sys$setuid(uid_t); KResultOr sys$setgid(gid_t); KResultOr sys$setreuid(uid_t, uid_t); KResultOr sys$setresuid(uid_t, uid_t, uid_t); KResultOr sys$setresgid(gid_t, gid_t, gid_t); KResultOr sys$alarm(unsigned seconds); KResultOr sys$access(Userspace pathname, size_t path_length, int mode); KResultOr sys$fcntl(int fd, int cmd, u32 extra_arg); KResultOr sys$ioctl(int fd, unsigned request, FlatPtr arg); KResultOr sys$mkdir(Userspace pathname, size_t path_length, mode_t mode); KResultOr sys$times(Userspace); KResultOr sys$utime(Userspace pathname, size_t path_length, Userspace); KResultOr sys$link(Userspace); KResultOr sys$unlink(Userspace pathname, size_t path_length); KResultOr sys$symlink(Userspace); KResultOr sys$rmdir(Userspace pathname, size_t path_length); KResultOr sys$mount(Userspace); KResultOr sys$umount(Userspace mountpoint, size_t mountpoint_length); KResultOr sys$chmod(Userspace pathname, size_t path_length, mode_t); KResultOr sys$fchmod(int fd, mode_t); KResultOr sys$chown(Userspace); KResultOr sys$fchown(int fd, uid_t, gid_t); KResultOr sys$socket(int domain, int type, int protocol); KResultOr sys$bind(int sockfd, Userspace addr, socklen_t); KResultOr sys$listen(int sockfd, int backlog); KResultOr sys$accept4(Userspace); KResultOr sys$connect(int sockfd, Userspace, socklen_t); KResultOr sys$shutdown(int sockfd, int how); KResultOr sys$sendmsg(int sockfd, Userspace, int flags); KResultOr sys$recvmsg(int sockfd, Userspace, int flags); KResultOr sys$getsockopt(Userspace); KResultOr sys$setsockopt(Userspace); KResultOr sys$getsockname(Userspace); KResultOr sys$getpeername(Userspace); KResultOr sys$socketpair(Userspace); KResultOr sys$sched_setparam(pid_t pid, Userspace); KResultOr sys$sched_getparam(pid_t pid, Userspace); KResultOr sys$create_thread(void* (*)(void*), Userspace); [[noreturn]] void sys$exit_thread(Userspace, Userspace, size_t); KResultOr sys$join_thread(pid_t tid, Userspace exit_value); KResultOr sys$detach_thread(pid_t tid); KResultOr sys$set_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); KResultOr sys$get_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); KResultOr sys$kill_thread(pid_t tid, int signal); KResultOr sys$rename(Userspace); KResultOr sys$mknod(Userspace); KResultOr sys$halt(); KResultOr sys$reboot(); KResultOr sys$realpath(Userspace); KResultOr sys$getrandom(Userspace, size_t, unsigned int); KResultOr sys$getkeymap(Userspace); KResultOr sys$setkeymap(Userspace); KResultOr sys$module_load(Userspace path, size_t path_length); KResultOr sys$module_unload(Userspace name, size_t name_length); KResultOr sys$profiling_enable(pid_t, u64); KResultOr sys$profiling_disable(pid_t); KResultOr sys$profiling_free_buffer(pid_t); KResultOr sys$futex(Userspace); KResultOr sys$chroot(Userspace path, size_t path_length, int mount_flags); KResultOr sys$pledge(Userspace); KResultOr sys$unveil(Userspace); KResultOr sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2); KResultOr sys$get_stack_bounds(Userspace stack_base, Userspace stack_size); KResultOr sys$ptrace(Userspace); KResultOr sys$sendfd(int sockfd, int fd); KResultOr sys$recvfd(int sockfd, int options); KResultOr sys$sysconf(int name); KResultOr sys$disown(ProcessID); KResultOr sys$allocate_tls(Userspace initial_data, size_t); KResultOr sys$prctl(int option, FlatPtr arg1, FlatPtr arg2); KResultOr sys$set_coredump_metadata(Userspace); KResultOr sys$anon_create(size_t, int options); KResultOr sys$statvfs(Userspace user_params); KResultOr sys$fstatvfs(int fd, statvfs* buf); template int get_sock_or_peer_name(const Params&); static void initialize(); [[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false); [[nodiscard]] siginfo_t wait_info(); const TTY* tty() const { return m_tty; } void set_tty(TTY*); u32 m_ticks_in_user { 0 }; u32 m_ticks_in_kernel { 0 }; u32 m_ticks_in_user_for_dead_children { 0 }; u32 m_ticks_in_kernel_for_dead_children { 0 }; Custody& current_directory(); Custody* executable() { return m_executable.ptr(); } const Custody* executable() const { return m_executable.ptr(); } const Vector& arguments() const { return m_arguments; }; const Vector& environment() const { return m_environment; }; KResult exec(String path, Vector arguments, Vector environment, int recusion_depth = 0); KResultOr load(NonnullRefPtr main_program_description, RefPtr interpreter_description, const ElfW(Ehdr) & main_program_header); bool is_superuser() const { return euid() == 0; } void terminate_due_to_signal(u8 signal); KResult send_signal(u8 signal, Process* sender); u8 termination_signal() const { return m_termination_signal; } u16 thread_count() const { return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed); } Mutex& big_lock() { return m_big_lock; } Mutex& ptrace_lock() { return m_ptrace_lock; } Custody& root_directory(); Custody& root_directory_relative_to_global_root(); void set_root_directory(const Custody&); bool has_promises() const { return m_has_promises; } bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); } VeilState veil_state() const { return m_veil_state; } const UnveilNode& unveiled_paths() const { return m_unveiled_paths; } bool wait_for_tracer_at_next_execve() const { return m_wait_for_tracer_at_next_execve; } void set_wait_for_tracer_at_next_execve(bool val) { m_wait_for_tracer_at_next_execve = val; } KResultOr peek_user_data(Userspace address); KResult poke_user_data(Userspace address, u32 data); void disowned_by_waiter(Process& process); void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0); Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; } template void for_each_coredump_property(Callback callback) const { for (auto& property : m_coredump_properties) { if (property.key && property.value) callback(*property.key, *property.value); } } KResult set_coredump_property(NonnullOwnPtr key, NonnullOwnPtr value); KResult try_set_coredump_property(StringView key, StringView value); const NonnullRefPtrVector& threads_for_coredump(Badge) const { return m_threads_for_coredump; } PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; } Memory::AddressSpace& address_space() { return *m_space; } Memory::AddressSpace const& address_space() const { return *m_space; } VirtualAddress signal_trampoline() const { return m_signal_trampoline; } private: friend class MemoryManager; friend class Scheduler; friend class Region; friend class PerformanceManager; bool add_thread(Thread&); bool remove_thread(Thread&); Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr cwd, RefPtr executable, TTY* tty); static RefPtr create(RefPtr& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr cwd = nullptr, RefPtr executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr); KResult attach_resources(RefPtr& first_thread, Process* fork_parent); static ProcessID allocate_pid(); void kill_threads_except_self(); void kill_all_threads(); bool dump_core(); bool dump_perfcore(); bool create_perf_events_buffer_if_needed(); void delete_perf_events_buffer(); KResult do_exec(NonnullRefPtr main_program_description, Vector arguments, Vector environment, RefPtr interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header); KResultOr do_write(FileDescription&, const UserOrKernelBuffer&, size_t); KResultOr do_statvfs(String path, statvfs* buf); KResultOr> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size); KResult do_kill(Process&, int signal); KResult do_killpg(ProcessGroupID pgrp, int signal); KResult do_killall(int signal); KResult do_killself(int signal); KResultOr do_waitid(idtype_t idtype, int id, int options); KResultOr> get_syscall_path_argument(const char* user_path, size_t path_length) const; KResultOr> get_syscall_path_argument(Userspace user_path, size_t path_length) const { return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length); } KResultOr> get_syscall_path_argument(const Syscall::StringArgument&) const; bool has_tracee_thread(ProcessID tracer_pid); void clear_futex_queues_on_exec(); void setup_socket_fd(int fd, NonnullRefPtr description, int type); inline PerformanceEventBuffer* current_perf_events_buffer() { if (g_profiling_all_threads) return g_global_perf_events; else if (m_profiling) return m_perf_event_buffer.ptr(); else return nullptr; } mutable IntrusiveListNode m_list_node; String m_name; OwnPtr m_space; RefPtr m_pg; AtomicEdgeAction m_protected_data_refs; void protect_data(); void unprotect_data(); OwnPtr m_tracer; public: class FileDescriptionAndFlags { public: bool is_valid() const { return !m_description.is_null(); } bool is_allocated() const { return m_is_allocated; } void allocate() { VERIFY(!m_is_allocated); VERIFY(!is_valid()); m_is_allocated = true; } void deallocate() { VERIFY(m_is_allocated); VERIFY(!is_valid()); m_is_allocated = false; } FileDescription* description() { return m_description; } const FileDescription* description() const { return m_description; } InodeIndex global_procfs_inode_index() const { return m_global_procfs_inode_index; } u32 flags() const { return m_flags; } void set_flags(u32 flags) { m_flags = flags; } void clear(); void set(NonnullRefPtr&&, u32 flags = 0); void refresh_inode_index(); private: RefPtr m_description; bool m_is_allocated { false }; u32 m_flags { 0 }; // Note: This is needed so when we generate inodes for ProcFS, we know that // we assigned a global Inode index to it so we can use it later InodeIndex m_global_procfs_inode_index; }; class ScopedDescriptionAllocation; class FileDescriptions { friend class Process; public: ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); } ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); } FileDescriptions& operator=(const Kernel::Process::FileDescriptions& other) { ScopedSpinLock lock(m_fds_lock); ScopedSpinLock lock_other(other.m_fds_lock); m_fds_metadatas = other.m_fds_metadatas; for (auto& file_description_metadata : m_fds_metadatas) { file_description_metadata.refresh_inode_index(); } return *this; } const FileDescriptionAndFlags& at(size_t i) const; FileDescriptionAndFlags& at(size_t i); void enumerate(Function) const; void change_each(Function); KResultOr allocate(int first_candidate_fd = 0); size_t open_count() const; bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); } size_t max_open() const { return m_max_open_file_descriptors; } void clear() { ScopedSpinLock lock(m_fds_lock); m_fds_metadatas.clear(); } // FIXME: Consider to remove this somehow RefPtr file_description(int fd) const; int fd_flags(int fd) const; private: FileDescriptions() = default; static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE }; mutable SpinLock m_fds_lock; Vector m_fds_metadatas; }; class ScopedDescriptionAllocation { AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation); public: ScopedDescriptionAllocation() = default; ScopedDescriptionAllocation(int tracked_fd, FileDescriptionAndFlags* description) : fd(tracked_fd) , m_description(description) { } ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other) : fd(other.fd) { // Take over the responsibility of tracking to deallocation. swap(m_description, other.m_description); } ~ScopedDescriptionAllocation() { if (m_description && m_description->is_allocated() && !m_description->is_valid()) { m_description->deallocate(); } } const int fd { -1 }; private: FileDescriptionAndFlags* m_description { nullptr }; }; FileDescriptions& fds() { return m_fds; } const FileDescriptions& fds() const { return m_fds; } private: SpinLockProtectedValue& thread_list() { return m_thread_list; } SpinLockProtectedValue const& thread_list() const { return m_thread_list; } SpinLockProtectedValue m_thread_list; FileDescriptions m_fds; const bool m_is_kernel_process; Atomic m_state { State::Running }; bool m_profiling { false }; Atomic m_is_stopped { false }; bool m_should_dump_core { false }; RefPtr m_executable; RefPtr m_cwd; RefPtr m_root_directory; RefPtr m_root_directory_relative_to_global_root; Vector m_arguments; Vector m_environment; RefPtr m_tty; WeakPtr m_master_tls_region; size_t m_master_tls_size { 0 }; size_t m_master_tls_alignment { 0 }; Mutex m_big_lock { "Process" }; Mutex m_ptrace_lock { "ptrace" }; RefPtr m_alarm_timer; VeilState m_veil_state { VeilState::None }; UnveilNode m_unveiled_paths { "/", { .full_path = "/" } }; OwnPtr m_perf_event_buffer; FutexQueues m_futex_queues; SpinLock m_futex_lock; // This member is used in the implementation of ptrace's PT_TRACEME flag. // If it is set to true, the process will stop at the next execve syscall // and wait for a tracer to attach. bool m_wait_for_tracer_at_next_execve { false }; Thread::WaitBlockCondition m_wait_block_condition; struct CoredumpProperty { OwnPtr key; OwnPtr value; }; Array m_coredump_properties; NonnullRefPtrVector m_threads_for_coredump; public: using List = IntrusiveListRelaxedConst, &Process::m_list_node>; }; extern RecursiveSpinLock g_profiling_lock; ProtectedValue& processes(); template Callback> inline void Process::for_each(Callback callback) { VERIFY_INTERRUPTS_DISABLED(); processes().with_shared([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (callback(process) == IterationDecision::Break) break; } }); } template Callback> inline void Process::for_each_child(Callback callback) { ProcessID my_pid = pid(); processes().with_shared([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (process.ppid() == my_pid || process.has_tracee_thread(pid())) { if (callback(process) == IterationDecision::Break) break; } } }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) const { return thread_list().with([&](auto& thread_list) -> IterationDecision { for (auto& thread : thread_list) { IterationDecision decision = callback(thread); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) { return thread_list().with([&](auto& thread_list) -> IterationDecision { for (auto& thread : thread_list) { IterationDecision decision = callback(thread); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; }); } template Callback> inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback) { processes().with_shared([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (!process.is_dead() && process.pgid() == pgid) { if (callback(process) == IterationDecision::Break) break; } } }); } template Callback> inline void Process::for_each(Callback callback) { return for_each([&](auto& item) { callback(item); return IterationDecision::Continue; }); } template Callback> inline void Process::for_each_child(Callback callback) { return for_each_child([&](auto& item) { callback(item); return IterationDecision::Continue; }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) const { thread_list().with([&](auto& thread_list) { for (auto& thread : thread_list) callback(thread); }); return IterationDecision::Continue; } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) { thread_list().with([&](auto& thread_list) { for (auto& thread : thread_list) callback(thread); }); return IterationDecision::Continue; } template Callback> inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback) { return for_each_in_pgrp(pgid, [&](auto& item) { callback(item); return IterationDecision::Continue; }); } inline bool InodeMetadata::may_read(const Process& process) const { return may_read(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_write(const Process& process) const { return may_write(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_execute(const Process& process) const { return may_execute(process.euid(), process.egid(), process.extra_gids()); } inline ProcessID Thread::pid() const { return m_process->pid(); } #define REQUIRE_NO_PROMISES \ do { \ if (Process::current()->has_promises()) { \ dbgln("Has made a promise"); \ Process::current()->crash(SIGABRT, 0); \ VERIFY_NOT_REACHED(); \ } \ } while (0) #define REQUIRE_PROMISE(promise) \ do { \ if (Process::current()->has_promises() \ && !Process::current()->has_promised(Pledge::promise)) { \ dbgln("Has not pledged {}", #promise); \ (void)Process::current()->try_set_coredump_property( \ "pledge_violation"sv, #promise); \ Process::current()->crash(SIGABRT, 0); \ VERIFY_NOT_REACHED(); \ } \ } while (0) } #define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \ VERIFY(process->big_lock().own_lock()); #define VERIFY_NO_PROCESS_BIG_LOCK(process) \ VERIFY(!process->big_lock().own_lock()); inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string) { return copy_string_from_user(string.characters, string.length); } inline static KResultOr> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string) { return try_copy_kstring_from_user(string.characters, string.length); } template<> struct AK::Formatter : AK::Formatter { void format(FormatBuilder& builder, const Kernel::Process& value) { return AK::Formatter::format(builder, String::formatted("{}({})", value.name(), value.pid().value())); } };