/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include namespace Gfx { template T abst(T value) { return value < 0 ? -value : value; } template class Rect { public: Rect() { } Rect(T x, T y, T width, T height) : m_location(x, y) , m_size(width, height) { } template Rect(U x, U y, U width, U height) : m_location(x, y) , m_size(width, height) { } Rect(const Point& location, const Size& size) : m_location(location) , m_size(size) { } template Rect(const Point& location, const Size& size) : m_location(location) , m_size(size) { } template explicit Rect(const Rect& other) : m_location(other.location()) , m_size(other.size()) { } bool is_null() const { return width() == 0 && height() == 0; } bool is_empty() const { return width() <= 0 || height() <= 0; } void move_by(T dx, T dy) { m_location.move_by(dx, dy); } void move_by(const Point& delta) { m_location.move_by(delta); } Point center() const { return { x() + width() / 2, y() + height() / 2 }; } void set_location(const Point& location) { m_location = location; } void set_size(const Size& size) { m_size = size; } void set_size(T width, T height) { m_size.set_width(width); m_size.set_height(height); } void inflate(T w, T h) { set_x(x() - w / 2); set_width(width() + w); set_y(y() - h / 2); set_height(height() + h); } void inflate(const Size& size) { set_x(x() - size.width() / 2); set_width(width() + size.width()); set_y(y() - size.height() / 2); set_height(height() + size.height()); } void shrink(T w, T h) { set_x(x() + w / 2); set_width(width() - w); set_y(y() + h / 2); set_height(height() - h); } void shrink(const Size& size) { set_x(x() + size.width() / 2); set_width(width() - size.width()); set_y(y() + size.height() / 2); set_height(height() - size.height()); } Rect shrunken(T w, T h) const { Rect rect = *this; rect.shrink(w, h); return rect; } Rect shrunken(const Size& size) const { Rect rect = *this; rect.shrink(size); return rect; } Rect inflated(T w, T h) const { Rect rect = *this; rect.inflate(w, h); return rect; } Rect inflated(const Size& size) const { Rect rect = *this; rect.inflate(size); return rect; } Rect translated(T dx, T dy) const { Rect rect = *this; rect.move_by(dx, dy); return rect; } Rect translated(const Point& delta) const { Rect rect = *this; rect.move_by(delta); return rect; } bool contains_vertically(T y) const { return y >= top() && y <= bottom(); } bool contains_horizontally(T x) const { return x >= left() && x <= right(); } bool contains(T x, T y) const { return x >= m_location.x() && x <= right() && y >= m_location.y() && y <= bottom(); } bool contains(const Point& point) const { return contains(point.x(), point.y()); } bool contains(const Rect& other) const { return left() <= other.left() && right() >= other.right() && top() <= other.top() && bottom() >= other.bottom(); } template bool contains(const Container& others) const { bool have_any = false; for (const auto& other : others) { if (!contains(other)) return false; have_any = true; } return have_any; } int primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); } void set_primary_offset_for_orientation(Orientation orientation, int value) { m_location.set_primary_offset_for_orientation(orientation, value); } int secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); } void set_secondary_offset_for_orientation(Orientation orientation, int value) { m_location.set_secondary_offset_for_orientation(orientation, value); } int primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); } int secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); } void set_primary_size_for_orientation(Orientation orientation, int value) { m_size.set_primary_size_for_orientation(orientation, value); } void set_secondary_size_for_orientation(Orientation orientation, int value) { m_size.set_secondary_size_for_orientation(orientation, value); } T first_edge_for_orientation(Orientation orientation) const { if (orientation == Orientation::Vertical) return top(); return left(); } T last_edge_for_orientation(Orientation orientation) const { if (orientation == Orientation::Vertical) return bottom(); return right(); } T left() const { return x(); } T right() const { return x() + width() - 1; } T top() const { return y(); } T bottom() const { return y() + height() - 1; } void set_left(T left) { set_x(left); } void set_top(T top) { set_y(top); } void set_right(T right) { set_width(right - x() + 1); } void set_bottom(T bottom) { set_height(bottom - y() + 1); } void set_right_without_resize(T new_right) { int delta = new_right - right(); move_by(delta, 0); } void set_bottom_without_resize(T new_bottom) { int delta = new_bottom - bottom(); move_by(0, delta); } bool intersects_vertically(const Rect& other) const { return top() <= other.bottom() && other.top() <= bottom(); } bool intersects_horizontally(const Rect& other) const { return left() <= other.right() && other.left() <= right(); } bool intersects(const Rect& other) const { return left() <= other.right() && other.left() <= right() && top() <= other.bottom() && other.top() <= bottom(); } template bool intersects(const Container& others) const { for (const auto& other : others) { if (intersects(other)) return true; } return false; } template IterationDecision for_each_intersected(const Container& others, Function f) const { if (is_empty()) return IterationDecision::Continue; for (const auto& other : others) { auto intersected_rect = intersected(other); if (!intersected_rect.is_empty()) { IterationDecision decision = f(intersected_rect); if (decision != IterationDecision::Continue) return decision; } } return IterationDecision::Continue; } T x() const { return location().x(); } T y() const { return location().y(); } T width() const { return m_size.width(); } T height() const { return m_size.height(); } void set_x(T x) { m_location.set_x(x); } void set_y(T y) { m_location.set_y(y); } void set_width(T width) { m_size.set_width(width); } void set_height(T height) { m_size.set_height(height); } const Point& location() const { return m_location; } const Size& size() const { return m_size; } Vector, 4> shatter(const Rect& hammer) const; bool operator==(const Rect& other) const { return m_location == other.m_location && m_size == other.m_size; } bool operator!=(const Rect& other) const { return !(*this == other); } Rect operator*(T factor) const { return { m_location * factor, m_size * factor }; } Rect& operator*=(T factor) { m_location *= factor; m_size *= factor; return *this; } void intersect(const Rect&); static Rect from_two_points(const Point& a, const Point& b) { return { min(a.x(), b.x()), min(a.y(), b.y()), abst(a.x() - b.x()), abst(a.y() - b.y()) }; } static Rect intersection(const Rect& a, const Rect& b) { Rect r = a; r.intersect(b); return r; } Rect intersected(const Rect& other) const { return intersection(*this, other); } Rect united(const Rect&) const; Point top_left() const { return { left(), top() }; } Point top_right() const { return { right(), top() }; } Point bottom_left() const { return { left(), bottom() }; } Point bottom_right() const { return { right(), bottom() }; } void align_within(const Rect&, TextAlignment); void center_within(const Rect& other) { center_horizontally_within(other); center_vertically_within(other); } void center_horizontally_within(const Rect& other) { set_x(other.center().x() - width() / 2); } void center_vertically_within(const Rect& other) { set_y(other.center().y() - height() / 2); } template Rect to() const { return Rect(*this); } String to_string() const; private: Point m_location; Size m_size; }; template const LogStream& operator<<(const LogStream& stream, const Rect& rect) { return stream << rect.to_string(); } using IntRect = Rect; using FloatRect = Rect; ALWAYS_INLINE IntRect enclosing_int_rect(const FloatRect& float_rect) { return { (int)float_rect.x(), (int)float_rect.y(), (int)ceilf(float_rect.width()), (int)ceilf(float_rect.height()), }; } } namespace AK { template struct Formatter> : Formatter { void format(FormatBuilder& builder, const Gfx::Rect& value) { Formatter::format(builder, value.to_string()); } }; } namespace IPC { bool decode(Decoder&, Gfx::IntRect&); bool encode(Encoder&, const Gfx::IntRect&); }