/* * Copyright (c) 2023, Lucas Chollet * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Gfx { /// 4.2 - Functions static ALWAYS_INLINE i32 unpack_signed(u32 u) { if (u % 2 == 0) return static_cast(u / 2); return -static_cast((u + 1) / 2); } /// /// B.2 - Field types // This is defined as a macro in order to get lazy-evaluated parameter // Note that the lambda will capture your context by reference. #define U32(d0, d1, d2, d3) \ ({ \ u8 const selector = TRY(stream.read_bits(2)); \ auto value = [&, selector]() -> ErrorOr { \ if (selector == 0) \ return (d0); \ if (selector == 1) \ return (d1); \ if (selector == 2) \ return (d2); \ if (selector == 3) \ return (d3); \ VERIFY_NOT_REACHED(); \ }(); \ TRY(value); \ }) static ALWAYS_INLINE ErrorOr U64(LittleEndianInputBitStream& stream) { u8 const selector = TRY(stream.read_bits(2)); if (selector == 0) return 0; if (selector == 1) return 1 + TRY(stream.read_bits(4)); if (selector == 2) return 17 + TRY(stream.read_bits(8)); VERIFY(selector == 3); u64 value = TRY(stream.read_bits(12)); u8 shift = 12; while (TRY(stream.read_bits(1)) == 1) { if (shift == 60) { value += TRY(stream.read_bits(4)) << shift; break; } value += TRY(stream.read_bits(8)) << shift; shift += 8; } return value; } template ErrorOr read_enum(LittleEndianInputBitStream& stream) { return static_cast(U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(6)))); } // This is not specified static ErrorOr read_string(LittleEndianInputBitStream& stream) { auto const name_length = U32(0, TRY(stream.read_bits(4)), 16 + TRY(stream.read_bits(5)), 48 + TRY(stream.read_bits(10))); auto string_buffer = TRY(FixedArray::create(name_length)); TRY(stream.read_until_filled(string_buffer.span())); return String::from_utf8(StringView { string_buffer.span() }); } /// /// D.2 - Image dimensions struct SizeHeader { u32 height {}; u32 width {}; }; static u32 aspect_ratio(u32 height, u32 ratio) { if (ratio == 1) return height; if (ratio == 2) return height * 12 / 10; if (ratio == 3) return height * 4 / 3; if (ratio == 4) return height * 3 / 2; if (ratio == 5) return height * 16 / 9; if (ratio == 6) return height * 5 / 4; if (ratio == 7) return height * 2 / 1; VERIFY_NOT_REACHED(); } static ErrorOr read_size_header(LittleEndianInputBitStream& stream) { SizeHeader size {}; auto const div8 = TRY(stream.read_bit()); if (div8) { auto const h_div8 = 1 + TRY(stream.read_bits(5)); size.height = 8 * h_div8; } else { size.height = U32( 1 + TRY(stream.read_bits(9)), 1 + TRY(stream.read_bits(13)), 1 + TRY(stream.read_bits(18)), 1 + TRY(stream.read_bits(30))); } auto const ratio = TRY(stream.read_bits(3)); if (ratio == 0) { if (div8) { auto const w_div8 = 1 + TRY(stream.read_bits(5)); size.width = 8 * w_div8; } else { size.width = U32( 1 + TRY(stream.read_bits(9)), 1 + TRY(stream.read_bits(13)), 1 + TRY(stream.read_bits(18)), 1 + TRY(stream.read_bits(30))); } } else { size.width = aspect_ratio(size.height, ratio); } return size; } /// /// D.3.5 - BitDepth struct BitDepth { u32 bits_per_sample { 8 }; u8 exp_bits {}; }; static ErrorOr read_bit_depth(LittleEndianInputBitStream& stream) { BitDepth bit_depth; bool const float_sample = TRY(stream.read_bit()); if (float_sample) { bit_depth.bits_per_sample = U32(32, 16, 24, 1 + TRY(stream.read_bits(6))); bit_depth.exp_bits = 1 + TRY(stream.read_bits(4)); } else { bit_depth.bits_per_sample = U32(8, 10, 12, 1 + TRY(stream.read_bits(6))); } return bit_depth; } /// /// E.2 - ColourEncoding struct ColourEncoding { enum class ColourSpace { kRGB = 0, kGrey = 1, kXYB = 2, kUnknown = 3, }; enum class WhitePoint { kD65 = 1, kCustom = 2, kE = 10, kDCI = 11, }; enum class Primaries { kSRGB = 1, kCustom = 2, k2100 = 3, kP3 = 11, }; enum class RenderingIntent { kPerceptual = 0, kRelative = 1, kSaturation = 2, kAbsolute = 3, }; struct Customxy { u32 ux {}; u32 uy {}; }; enum class TransferFunction { k709 = 1, kUnknown = 2, kLinear = 8, kSRGB = 13, kPQ = 16, kDCI = 17, kHLG = 18, }; struct CustomTransferFunction { bool have_gamma { false }; u32 gamma {}; TransferFunction transfer_function { TransferFunction::kSRGB }; }; bool want_icc = false; ColourSpace colour_space { ColourSpace::kRGB }; WhitePoint white_point { WhitePoint::kD65 }; Primaries primaries { Primaries::kSRGB }; Customxy white {}; Customxy red {}; Customxy green {}; Customxy blue {}; CustomTransferFunction tf {}; RenderingIntent rendering_intent { RenderingIntent::kRelative }; }; [[maybe_unused]] static ErrorOr read_custom_xy(LittleEndianInputBitStream& stream) { ColourEncoding::Customxy custom_xy; auto const read_custom = [&stream]() -> ErrorOr { return U32( TRY(stream.read_bits(19)), 524288 + TRY(stream.read_bits(19)), 1048576 + TRY(stream.read_bits(20)), 2097152 + TRY(stream.read_bits(21))); }; custom_xy.ux = TRY(read_custom()); custom_xy.uy = TRY(read_custom()); return custom_xy; } static ErrorOr read_custom_transfer_function(LittleEndianInputBitStream& stream) { ColourEncoding::CustomTransferFunction custom_transfer_function; custom_transfer_function.have_gamma = TRY(stream.read_bit()); if (custom_transfer_function.have_gamma) custom_transfer_function.gamma = TRY(stream.read_bits(24)); else custom_transfer_function.transfer_function = TRY(read_enum(stream)); return custom_transfer_function; } static ErrorOr read_colour_encoding(LittleEndianInputBitStream& stream) { ColourEncoding colour_encoding; bool const all_default = TRY(stream.read_bit()); if (!all_default) { colour_encoding.want_icc = TRY(stream.read_bit()); colour_encoding.colour_space = TRY(read_enum(stream)); auto const use_desc = !all_default && !colour_encoding.want_icc; auto const not_xyb = colour_encoding.colour_space != ColourEncoding::ColourSpace::kXYB; if (use_desc && not_xyb) colour_encoding.white_point = TRY(read_enum(stream)); if (colour_encoding.white_point == ColourEncoding::WhitePoint::kCustom) colour_encoding.white = TRY(read_custom_xy(stream)); auto const has_primaries = use_desc && not_xyb && colour_encoding.colour_space != ColourEncoding::ColourSpace::kGrey; if (has_primaries) colour_encoding.primaries = TRY(read_enum(stream)); if (colour_encoding.primaries == ColourEncoding::Primaries::kCustom) { colour_encoding.red = TRY(read_custom_xy(stream)); colour_encoding.green = TRY(read_custom_xy(stream)); colour_encoding.blue = TRY(read_custom_xy(stream)); } if (use_desc) { colour_encoding.tf = TRY(read_custom_transfer_function(stream)); colour_encoding.rendering_intent = TRY(read_enum(stream)); } } return colour_encoding; } /// /// B.3 - Extensions struct Extensions { u64 extensions {}; }; static ErrorOr read_extensions(LittleEndianInputBitStream& stream) { Extensions extensions; extensions.extensions = TRY(U64(stream)); if (extensions.extensions != 0) TODO(); return extensions; } /// /// K.2 - Non-separable upsampling Array s_d_up2 { -0.01716200, -0.03452303, -0.04022174, -0.02921014, -0.00624645, 0.14111091, 0.28896755, 0.00278718, -0.01610267, 0.56661550, 0.03777607, -0.01986694, -0.03144731, -0.01185068, -0.00213539 }; Array s_d_up4 = { -0.02419067, -0.03491987, -0.03693351, -0.03094285, -0.00529785, -0.01663432, -0.03556863, -0.03888905, -0.03516850, -0.00989469, 0.23651958, 0.33392945, -0.01073543, -0.01313181, -0.03556694, 0.13048175, 0.40103025, 0.03951150, -0.02077584, 0.46914198, -0.00209270, -0.01484589, -0.04064806, 0.18942530, 0.56279892, 0.06674400, -0.02335494, -0.03551682, -0.00754830, -0.02267919, -0.02363578, 0.00315804, -0.03399098, -0.01359519, -0.00091653, -0.00335467, -0.01163294, -0.01610294, -0.00974088, -0.00191622, -0.01095446, -0.03198464, -0.04455121, -0.02799790, -0.00645912, 0.06390599, 0.22963888, 0.00630981, -0.01897349, 0.67537268, 0.08483369, -0.02534994, -0.02205197, -0.01667999, -0.00384443 }; Array s_d_up8 { -0.02928613, -0.03706353, -0.03783812, -0.03324558, -0.00447632, -0.02519406, -0.03752601, -0.03901508, -0.03663285, -0.00646649, -0.02066407, -0.03838633, -0.04002101, -0.03900035, -0.00901973, -0.01626393, -0.03954148, -0.04046620, -0.03979621, -0.01224485, 0.29895328, 0.35757708, -0.02447552, -0.01081748, -0.04314594, 0.23903219, 0.41119301, -0.00573046, -0.01450239, -0.04246845, 0.17567618, 0.45220643, 0.02287757, -0.01936783, -0.03583255, 0.11572472, 0.47416733, 0.06284440, -0.02685066, 0.42720050, -0.02248939, -0.01155273, -0.04562755, 0.28689496, 0.49093869, -0.00007891, -0.01545926, -0.04562659, 0.21238920, 0.53980934, 0.03369474, -0.02070211, -0.03866988, 0.14229550, 0.56593398, 0.08045181, -0.02888298, -0.03680918, -0.00542229, -0.02920477, -0.02788574, -0.02118180, -0.03942402, -0.00775547, -0.02433614, -0.03193943, -0.02030828, -0.04044014, -0.01074016, -0.01930822, -0.03620399, -0.01974125, -0.03919545, -0.01456093, -0.00045072, -0.00360110, -0.01020207, -0.01231907, -0.00638988, -0.00071592, -0.00279122, -0.00957115, -0.01288327, -0.00730937, -0.00107783, -0.00210156, -0.00890705, -0.01317668, -0.00813895, -0.00153491, -0.02128481, -0.04173044, -0.04831487, -0.03293190, -0.00525260, -0.01720322, -0.04052736, -0.05045706, -0.03607317, -0.00738030, -0.01341764, -0.03965629, -0.05151616, -0.03814886, -0.01005819, 0.18968273, 0.33063684, -0.01300105, -0.01372950, -0.04017465, 0.13727832, 0.36402234, 0.01027890, -0.01832107, -0.03365072, 0.08734506, 0.38194295, 0.04338228, -0.02525993, 0.56408126, 0.00458352, -0.01648227, -0.04887868, 0.24585519, 0.62026135, 0.04314807, -0.02213737, -0.04158014, 0.16637289, 0.65027023, 0.09621636, -0.03101388, -0.04082742, -0.00904519, -0.02790922, -0.02117818, 0.00798662, -0.03995711, -0.01243427, -0.02231705, -0.02946266, 0.00992055, -0.03600283, -0.01684920, -0.00111684, -0.00411204, -0.01297130, -0.01723725, -0.01022545, -0.00165306, -0.00313110, -0.01218016, -0.01763266, -0.01125620, -0.00231663, -0.01374149, -0.03797620, -0.05142937, -0.03117307, -0.00581914, -0.01064003, -0.03608089, -0.05272168, -0.03375670, -0.00795586, 0.09628104, 0.27129991, -0.00353779, -0.01734151, -0.03153981, 0.05686230, 0.28500998, 0.02230594, -0.02374955, 0.68214326, 0.05018048, -0.02320852, -0.04383616, 0.18459474, 0.71517975, 0.10805613, -0.03263677, -0.03637639, -0.01394373, -0.02511203, -0.01728636, 0.05407331, -0.02867568, -0.01893131, -0.00240854, -0.00446511, -0.01636187, -0.02377053, -0.01522848, -0.00333334, -0.00819975, -0.02964169, -0.04499287, -0.02745350, -0.00612408, 0.02727416, 0.19446600, 0.00159832, -0.02232473, 0.74982506, 0.11452620, -0.03348048, -0.01605681, -0.02070339, -0.00458223 }; /// /// D.3 - Image metadata struct PreviewHeader { }; struct AnimationHeader { }; struct ExtraChannelInfo { enum class ExtraChannelType { kAlpha = 0, kDepth = 1, kSpotColour = 2, kSelectionMask = 3, kBlack = 4, kCFA = 5, kThermal = 6, kNonOptional = 15, kOptional = 16, }; bool d_alpha { true }; ExtraChannelType type { ExtraChannelType::kAlpha }; BitDepth bit_depth {}; u32 dim_shift {}; String name; bool alpha_associated { false }; }; static ErrorOr read_extra_channel_info(LittleEndianInputBitStream& stream) { ExtraChannelInfo extra_channel_info; extra_channel_info.d_alpha = TRY(stream.read_bit()); if (!extra_channel_info.d_alpha) { extra_channel_info.type = TRY(read_enum(stream)); extra_channel_info.bit_depth = TRY(read_bit_depth(stream)); extra_channel_info.dim_shift = U32(0, 3, 4, 1 + TRY(stream.read_bits(3))); extra_channel_info.name = TRY(read_string(stream)); if (extra_channel_info.type == ExtraChannelInfo::ExtraChannelType::kAlpha) extra_channel_info.alpha_associated = TRY(stream.read_bit()); } if (extra_channel_info.type != ExtraChannelInfo::ExtraChannelType::kAlpha) { TODO(); } return extra_channel_info; } struct ToneMapping { float intensity_target { 255 }; float min_nits { 0 }; bool relative_to_max_display { false }; float linear_below { 0 }; }; static ErrorOr read_tone_mapping(LittleEndianInputBitStream& stream) { ToneMapping tone_mapping; bool const all_default = TRY(stream.read_bit()); if (!all_default) { TODO(); } return tone_mapping; } struct OpsinInverseMatrix { }; static ErrorOr read_opsin_inverse_matrix(LittleEndianInputBitStream&) { TODO(); } struct ImageMetadata { u8 orientation { 1 }; Optional intrinsic_size; Optional preview; Optional animation; BitDepth bit_depth; bool modular_16bit_buffers { true }; u16 num_extra_channels {}; Vector ec_info; bool xyb_encoded { true }; ColourEncoding colour_encoding; ToneMapping tone_mapping; Extensions extensions; bool default_m; OpsinInverseMatrix opsin_inverse_matrix; u8 cw_mask { 0 }; Array up2_weight = s_d_up2; Array up4_weight = s_d_up4; Array up8_weight = s_d_up8; u16 number_of_color_channels() const { if (!xyb_encoded && colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) return 1; return 3; } u16 number_of_channels() const { return number_of_color_channels() + num_extra_channels; } Optional alpha_channel() const { for (u16 i = 0; i < ec_info.size(); ++i) { if (ec_info[i].type == ExtraChannelInfo::ExtraChannelType::kAlpha) return i + number_of_color_channels(); } return OptionalNone {}; } }; static ErrorOr read_metadata_header(LittleEndianInputBitStream& stream) { ImageMetadata metadata; bool const all_default = TRY(stream.read_bit()); if (!all_default) { bool const extra_fields = TRY(stream.read_bit()); if (extra_fields) { metadata.orientation = 1 + TRY(stream.read_bits(3)); bool const have_intr_size = TRY(stream.read_bit()); if (have_intr_size) metadata.intrinsic_size = TRY(read_size_header(stream)); bool const have_preview = TRY(stream.read_bit()); if (have_preview) TODO(); bool const have_animation = TRY(stream.read_bit()); if (have_animation) TODO(); } metadata.bit_depth = TRY(read_bit_depth(stream)); metadata.modular_16bit_buffers = TRY(stream.read_bit()); metadata.num_extra_channels = U32(0, 1, 2 + TRY(stream.read_bits(4)), 1 + TRY(stream.read_bits(12))); for (u16 i {}; i < metadata.num_extra_channels; ++i) metadata.ec_info.append(TRY(read_extra_channel_info(stream))); metadata.xyb_encoded = TRY(stream.read_bit()); metadata.colour_encoding = TRY(read_colour_encoding(stream)); if (extra_fields) metadata.tone_mapping = TRY(read_tone_mapping(stream)); metadata.extensions = TRY(read_extensions(stream)); } metadata.default_m = TRY(stream.read_bit()); if (!metadata.default_m && metadata.xyb_encoded) metadata.opsin_inverse_matrix = TRY(read_opsin_inverse_matrix(stream)); if (!metadata.default_m) metadata.cw_mask = TRY(stream.read_bits(3)); if (metadata.cw_mask != 0) TODO(); return metadata; } /// /// Table F.7 — BlendingInfo bundle struct BlendingInfo { enum class BlendMode { kReplace = 0, kAdd = 1, kBlend = 2, kMulAdd = 3, kMul = 4, }; BlendMode mode {}; u8 alpha_channel {}; bool clamp { false }; u8 source {}; }; static ErrorOr read_blending_info(LittleEndianInputBitStream& stream, ImageMetadata const& metadata, bool full_frame) { BlendingInfo blending_info; blending_info.mode = static_cast(U32(0, 1, 2, 3 + TRY(stream.read_bits(2)))); bool const extra = metadata.num_extra_channels > 0; if (extra) { auto const blend_or_mul_add = blending_info.mode == BlendingInfo::BlendMode::kBlend || blending_info.mode == BlendingInfo::BlendMode::kMulAdd; if (blend_or_mul_add) blending_info.alpha_channel = U32(0, 1, 2, 3 + TRY(stream.read_bits(3))); if (blend_or_mul_add || blending_info.mode == BlendingInfo::BlendMode::kMul) blending_info.clamp = TRY(stream.read_bit()); } if (blending_info.mode != BlendingInfo::BlendMode::kReplace || !full_frame) { blending_info.source = TRY(stream.read_bits(2)); } return blending_info; } /// /// J.1 - General struct RestorationFilter { bool gab { true }; u8 epf_iters { 2 }; Extensions extensions; }; static ErrorOr read_restoration_filter(LittleEndianInputBitStream& stream) { RestorationFilter restoration_filter; auto const all_defaults = TRY(stream.read_bit()); if (!all_defaults) { restoration_filter.gab = TRY(stream.read_bit()); if (restoration_filter.gab) { TODO(); } restoration_filter.epf_iters = TRY(stream.read_bits(2)); if (restoration_filter.epf_iters != 0) { TODO(); } restoration_filter.extensions = TRY(read_extensions(stream)); } return restoration_filter; } /// /// Table F.6 — Passes bundle struct Passes { u8 num_passes { 1 }; }; static ErrorOr read_passes(LittleEndianInputBitStream& stream) { Passes passes; passes.num_passes = U32(1, 2, 3, 4 + TRY(stream.read_bits(3))); if (passes.num_passes != 1) { TODO(); } return passes; } /// /// F.2 - FrameHeader struct FrameHeader { enum class FrameType { kRegularFrame = 0, kLFFrame = 1, kReferenceOnly = 2, kSkipProgressive = 3, }; enum class Encoding { kVarDCT = 0, kModular = 1, }; enum class Flags { None = 0, kNoise = 1, kPatches = 1 << 1, kSplines = 1 << 4, kUseLfFrame = 1 << 5, kSkipAdaptiveLFSmoothing = 1 << 7, }; FrameType frame_type { FrameType::kRegularFrame }; Encoding encoding { Encoding::kVarDCT }; Flags flags { Flags::None }; bool do_YCbCr { false }; Array jpeg_upsampling {}; u8 upsampling {}; FixedArray ec_upsampling {}; u8 group_size_shift { 1 }; Passes passes {}; u8 lf_level {}; bool have_crop { false }; BlendingInfo blending_info {}; FixedArray ec_blending_info {}; u32 duration {}; bool is_last { true }; u8 save_as_reference {}; bool save_before_ct {}; String name {}; RestorationFilter restoration_filter {}; Extensions extensions {}; }; static int operator&(FrameHeader::Flags first, FrameHeader::Flags second) { return static_cast(first) & static_cast(second); } static ErrorOr read_frame_header(LittleEndianInputBitStream& stream, ImageMetadata const& metadata) { FrameHeader frame_header; bool const all_default = TRY(stream.read_bit()); if (!all_default) { frame_header.frame_type = static_cast(TRY(stream.read_bits(2))); frame_header.encoding = static_cast(TRY(stream.read_bits(1))); frame_header.flags = static_cast(TRY(U64(stream))); if (!metadata.xyb_encoded) frame_header.do_YCbCr = TRY(stream.read_bit()); if (!(frame_header.flags & FrameHeader::Flags::kUseLfFrame)) { if (frame_header.do_YCbCr) { frame_header.jpeg_upsampling[0] = TRY(stream.read_bits(2)); frame_header.jpeg_upsampling[1] = TRY(stream.read_bits(2)); frame_header.jpeg_upsampling[2] = TRY(stream.read_bits(2)); } frame_header.upsampling = U32(1, 2, 4, 8); frame_header.ec_upsampling = TRY(FixedArray::create(metadata.num_extra_channels)); for (u16 i {}; i < metadata.num_extra_channels; ++i) frame_header.ec_upsampling[i] = U32(1, 2, 4, 8); } if (frame_header.encoding == FrameHeader::Encoding::kModular) frame_header.group_size_shift = TRY(stream.read_bits(2)); if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) TODO(); if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly) frame_header.passes = TRY(read_passes(stream)); if (frame_header.frame_type == FrameHeader::FrameType::kLFFrame) TODO(); if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) frame_header.have_crop = TRY(stream.read_bit()); if (frame_header.have_crop) TODO(); bool const normal_frame = frame_header.frame_type == FrameHeader::FrameType::kRegularFrame || frame_header.frame_type == FrameHeader::FrameType::kSkipProgressive; // FIXME: also consider "cropped" image of the dimension of the frame VERIFY(!frame_header.have_crop); bool const full_frame = !frame_header.have_crop; if (normal_frame) { frame_header.blending_info = TRY(read_blending_info(stream, metadata, full_frame)); frame_header.ec_blending_info = TRY(FixedArray::create(metadata.num_extra_channels)); for (u16 i {}; i < metadata.num_extra_channels; ++i) frame_header.ec_blending_info[i] = TRY(read_blending_info(stream, metadata, full_frame)); if (metadata.animation.has_value()) TODO(); frame_header.is_last = TRY(stream.read_bit()); } // FIXME: Ensure that is_last has the correct default value VERIFY(normal_frame); auto const resets_canvas = full_frame && frame_header.blending_info.mode == BlendingInfo::BlendMode::kReplace; auto const can_reference = !frame_header.is_last && (frame_header.duration == 0 || frame_header.save_as_reference != 0) && frame_header.frame_type != FrameHeader::FrameType::kLFFrame; if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) { if (!frame_header.is_last) TODO(); } frame_header.save_before_ct = !normal_frame; if (frame_header.frame_type == FrameHeader::FrameType::kReferenceOnly || (resets_canvas && can_reference)) frame_header.save_before_ct = TRY(stream.read_bit()); frame_header.name = TRY(read_string(stream)); frame_header.restoration_filter = TRY(read_restoration_filter(stream)); frame_header.extensions = TRY(read_extensions(stream)); } return frame_header; } /// /// F.3 TOC struct TOC { FixedArray entries; FixedArray group_offsets; }; static u64 num_toc_entries(FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups) { // F.3.1 - General if (num_groups == 1 && frame_header.passes.num_passes == 1) return 1; return 1 + num_lf_groups + 1 + num_groups * frame_header.passes.num_passes; } static ErrorOr read_toc(LittleEndianInputBitStream& stream, FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups) { TOC toc; bool const permuted_toc = TRY(stream.read_bit()); if (permuted_toc) { // Read permutations TODO(); } // F.3.3 - Decoding TOC stream.align_to_byte_boundary(); auto const toc_entries = num_toc_entries(frame_header, num_groups, num_lf_groups); toc.entries = TRY(FixedArray::create(toc_entries)); toc.group_offsets = TRY(FixedArray::create(toc_entries)); for (u32 i {}; i < toc_entries; ++i) { auto const new_entry = U32( TRY(stream.read_bits(10)), 1024 + TRY(stream.read_bits(14)), 17408 + TRY(stream.read_bits(22)), 4211712 + TRY(stream.read_bits(30))); toc.entries[i] = new_entry; toc.group_offsets[i] = (i == 0 ? 0 : toc.group_offsets[i - 1]) + new_entry; } if (permuted_toc) TODO(); stream.align_to_byte_boundary(); return toc; } /// /// G.1.2 - LF channel dequantization weights struct LfChannelDequantization { float m_x_lf_unscaled { 4096 }; float m_y_lf_unscaled { 512 }; float m_b_lf_unscaled { 256 }; }; static ErrorOr read_lf_channel_dequantization(LittleEndianInputBitStream& stream) { LfChannelDequantization lf_channel_dequantization; auto const all_default = TRY(stream.read_bit()); if (!all_default) { TODO(); } return lf_channel_dequantization; } /// /// C - Entropy decoding class ANSHistogram { public: static ErrorOr read_histogram(LittleEndianInputBitStream& stream, u8 log_alphabet_size) { ANSHistogram histogram; auto const alphabet_size = TRY(histogram.read_ans_distribution(stream, log_alphabet_size)); // C.2.6 - Alias mapping histogram.m_log_bucket_size = 12 - log_alphabet_size; histogram.m_bucket_size = 1 << histogram.m_log_bucket_size; auto const table_size = 1 << log_alphabet_size; Optional index_of_unique_symbol {}; for (u64 i {}; i < histogram.m_distribution.size(); ++i) { if (histogram.m_distribution[i] == 1 << 12) index_of_unique_symbol = i; } TRY(histogram.m_symbols.try_resize(table_size)); TRY(histogram.m_offsets.try_resize(table_size)); TRY(histogram.m_cutoffs.try_resize(table_size)); if (index_of_unique_symbol.has_value()) { auto const s = *index_of_unique_symbol; for (i32 i = 0; i < table_size; i++) { histogram.m_symbols[i] = s; histogram.m_offsets[i] = histogram.m_bucket_size * i; histogram.m_cutoffs[i] = 0; } return histogram; } Vector overfull; Vector underfull; for (u16 i {}; i < alphabet_size; i++) { histogram.m_cutoffs[i] = histogram.m_distribution[i]; histogram.m_symbols[i] = i; if (histogram.m_cutoffs[i] > histogram.m_bucket_size) TRY(overfull.try_append(i)); else if (histogram.m_cutoffs[i] < histogram.m_bucket_size) TRY(underfull.try_append(i)); } for (u16 i = alphabet_size; i < table_size; i++) { histogram.m_cutoffs[i] = 0; TRY(underfull.try_append(i)); } while (overfull.size() > 0) { VERIFY(underfull.size() > 0); auto const o = overfull.take_last(); auto const u = underfull.take_last(); auto const by = histogram.m_bucket_size - histogram.m_cutoffs[u]; histogram.m_cutoffs[o] -= by; histogram.m_symbols[u] = o; histogram.m_offsets[u] = histogram.m_cutoffs[o]; if (histogram.m_cutoffs[o] < histogram.m_bucket_size) TRY(underfull.try_append(o)); else if (histogram.m_cutoffs[o] > histogram.m_bucket_size) TRY(overfull.try_append(o)); } for (u16 i {}; i < table_size; i++) { if (histogram.m_cutoffs[i] == histogram.m_bucket_size) { histogram.m_symbols[i] = i; histogram.m_offsets[i] = 0; histogram.m_cutoffs[i] = 0; } else { histogram.m_offsets[i] -= histogram.m_cutoffs[i]; } } return histogram; } ErrorOr read_symbol(LittleEndianInputBitStream& stream, Optional& state) const { if (!state.has_value()) state = TRY(stream.read_bits(32)); auto const index = *state & 0xFFF; auto const symbol_and_offset = alias_mapping(index); state = m_distribution[symbol_and_offset.symbol] * (*state >> 12) + symbol_and_offset.offset; if (*state < (1 << 16)) state = (*state << 16) | TRY(stream.read_bits(16)); return symbol_and_offset.symbol; } private: static ErrorOr U8(LittleEndianInputBitStream& stream) { if (TRY(stream.read_bit()) == 0) return 0; auto const n = TRY(stream.read_bits(3)); return TRY(stream.read_bits(n)) + (1 << n); } struct SymbolAndOffset { u16 symbol {}; u16 offset {}; }; SymbolAndOffset alias_mapping(u32 x) const { // C.2.6 - Alias mapping auto const i = x >> m_log_bucket_size; auto const pos = x & (m_bucket_size - 1); u16 const symbol = pos >= m_cutoffs[i] ? m_symbols[i] : i; u16 const offset = pos >= m_cutoffs[i] ? m_offsets[i] + pos : pos; return { symbol, offset }; } static ErrorOr read_with_prefix(LittleEndianInputBitStream& stream) { auto const prefix = TRY(stream.read_bits(3)); switch (prefix) { case 0: return 10; case 1: for (auto const possibility : { 4, 0, 11, 13 }) { if (TRY(stream.read_bit())) return possibility; } return 12; case 2: return 7; case 3: return TRY(stream.read_bit()) ? 1 : 3; case 4: return 6; case 5: return 8; case 6: return 9; case 7: return TRY(stream.read_bit()) ? 2 : 5; default: VERIFY_NOT_REACHED(); } } ErrorOr read_ans_distribution(LittleEndianInputBitStream& stream, u8 log_alphabet_size) { // C.2.5 ANS distribution decoding auto const table_size = 1 << log_alphabet_size; m_distribution = TRY(FixedArray::create(table_size)); if (TRY(stream.read_bit())) { u16 alphabet_size {}; if (TRY(stream.read_bit())) { auto const v1 = TRY(U8(stream)); auto const v2 = TRY(U8(stream)); VERIFY(v1 != v2); m_distribution[v1] = TRY(stream.read_bits(12)); m_distribution[v2] = (1 << 12) - m_distribution[v1]; alphabet_size = 1 + max(v1, v2); } else { auto const x = TRY(U8(stream)); m_distribution[x] = 1 << 12; alphabet_size = 1 + x; } return alphabet_size; } if (TRY(stream.read_bit())) { auto const alphabet_size = TRY(U8(stream)) + 1; for (u16 i = 0; i < alphabet_size; i++) m_distribution[i] = (1 << 12) / alphabet_size; for (u16 i = 0; i < ((1 << 12) % alphabet_size); i++) m_distribution[i]++; return alphabet_size; } u8 len = 0; while (len < 3) { if (TRY(stream.read_bit())) len++; else break; } u8 const shift = TRY(stream.read_bits(len)) + (1 << len) - 1; VERIFY(shift <= 13); auto const alphabet_size = TRY(U8(stream)) + 3; i32 omit_log = -1; i32 omit_pos = -1; auto same = TRY(FixedArray::create(alphabet_size)); auto logcounts = TRY(FixedArray::create(alphabet_size)); u8 rle {}; for (u16 i = 0; i < alphabet_size; i++) { logcounts[i] = TRY(read_with_prefix(stream)); if (logcounts[i] == 13) { rle = TRY(U8(stream)); same[i] = rle + 5; i += rle + 3; continue; } if (logcounts[i] > omit_log) { omit_log = logcounts[i]; omit_pos = i; } } VERIFY(m_distribution[omit_pos] >= 0); VERIFY(omit_pos + 1 >= alphabet_size || logcounts[omit_pos + 1] != 13); i32 prev = 0; i32 numsame = 0; i64 total_count {}; for (u16 i = 0; i < alphabet_size; i++) { if (same[i] != 0) { numsame = same[i] - 1; prev = i > 0 ? m_distribution[i - 1] : 0; } if (numsame > 0) { m_distribution[i] = prev; numsame--; } else { auto const code = logcounts[i]; if (i == omit_pos || code == 0) continue; if (code == 1) { m_distribution[i] = 1; } else { auto const bitcount = min(max(0, shift - ((12 - code + 1) >> 1)), code - 1); m_distribution[i] = (1 << (code - 1)) + (TRY(stream.read_bits(bitcount)) << (code - 1 - bitcount)); } } total_count += m_distribution[i]; } m_distribution[omit_pos] = (1 << 12) - total_count; VERIFY(m_distribution[omit_pos] >= 0); return alphabet_size; } Vector m_symbols; Vector m_offsets; Vector m_cutoffs; FixedArray m_distribution; u16 m_log_bucket_size {}; u16 m_bucket_size {}; }; class EntropyDecoder { AK_MAKE_NONCOPYABLE(EntropyDecoder); AK_MAKE_DEFAULT_MOVABLE(EntropyDecoder); public: EntropyDecoder() = default; ~EntropyDecoder() { if (m_state.has_value() && *m_state != 0x130000) dbgln("JPEGXLLoader: ANS decoder left in invalid state"); } static ErrorOr create(LittleEndianInputBitStream& stream, u32 initial_num_distrib) { EntropyDecoder entropy_decoder; // C.2 - Distribution decoding entropy_decoder.m_lz77_enabled = TRY(stream.read_bit()); if (entropy_decoder.m_lz77_enabled) { TODO(); } TRY(entropy_decoder.read_pre_clustered_distributions(stream, initial_num_distrib)); bool const use_prefix_code = TRY(stream.read_bit()); if (!use_prefix_code) entropy_decoder.m_log_alphabet_size = 5 + TRY(stream.read_bits(2)); for (auto& config : entropy_decoder.m_configs) config = TRY(read_config(stream, entropy_decoder.m_log_alphabet_size)); if (use_prefix_code) { entropy_decoder.m_distributions = Vector {}; auto& distributions = entropy_decoder.m_distributions.get>(); TRY(distributions.try_resize(entropy_decoder.m_configs.size())); Vector counts; TRY(counts.try_resize(entropy_decoder.m_configs.size())); for (auto& count : counts) { if (TRY(stream.read_bit())) { auto const n = TRY(stream.read_bits(4)); count = 1 + (1 << n) + TRY(stream.read_bits(n)); } else { count = 1; } } // After reading the counts, the decoder reads each D[i] (implicitly // described by a prefix code) as specified in C.2.4, with alphabet_size = count[i]. for (u32 i {}; i < distributions.size(); ++i) { // The alphabet size mentioned in the [Brotli] RFC is explicitly specified as parameter alphabet_size // when the histogram is being decoded, except in the special case of alphabet_size == 1, where no // histogram is read, and all decoded symbols are zero without reading any bits at all. if (counts[i] != 1) distributions[i] = TRY(BrotliCanonicalCode::read_prefix_code(stream, counts[i])); else distributions[i] = BrotliCanonicalCode { { 1 }, { 0 } }; } } else { entropy_decoder.m_distributions = Vector {}; auto& distributions = entropy_decoder.m_distributions.get>(); TRY(distributions.try_ensure_capacity(entropy_decoder.m_configs.size())); for (u32 i = 0; i < entropy_decoder.m_configs.size(); ++i) distributions.empend(TRY(ANSHistogram::read_histogram(stream, entropy_decoder.m_log_alphabet_size))); } return entropy_decoder; } ErrorOr decode_hybrid_uint(LittleEndianInputBitStream& stream, u32 context) { // C.3.3 - Hybrid integer decoding if (m_lz77_enabled) TODO(); // Read symbol from entropy coded stream using D[clusters[ctx]] auto const token = TRY(read_symbol(stream, context)); auto r = TRY(read_uint(stream, m_configs[m_clusters[context]], token)); return r; } private: using BrotliCanonicalCode = Compress::Brotli::CanonicalCode; struct HybridUint { u32 split_exponent {}; u32 split {}; u32 msb_in_token {}; u32 lsb_in_token {}; }; static ErrorOr read_uint(LittleEndianInputBitStream& stream, HybridUint const& config, u32 token) { if (token < config.split) return token; auto const n = config.split_exponent - config.msb_in_token - config.lsb_in_token + ((token - config.split) >> (config.msb_in_token + config.lsb_in_token)); VERIFY(n < 32); u32 const low_bits = token & ((1 << config.lsb_in_token) - 1); token = token >> config.lsb_in_token; token &= (1 << config.msb_in_token) - 1; token |= (1 << config.msb_in_token); auto const result = ((token << n | TRY(stream.read_bits(n))) << config.lsb_in_token) | low_bits; VERIFY(result < (1ul << 32)); return result; } static ErrorOr read_config(LittleEndianInputBitStream& stream, u8 log_alphabet_size) { // C.2.3 - Hybrid integer configuration HybridUint config {}; config.split_exponent = TRY(stream.read_bits(ceil(log2(log_alphabet_size + 1)))); if (config.split_exponent != log_alphabet_size) { auto nbits = ceil(log2(config.split_exponent + 1)); config.msb_in_token = TRY(stream.read_bits(nbits)); nbits = ceil(log2(config.split_exponent - config.msb_in_token + 1)); config.lsb_in_token = TRY(stream.read_bits(nbits)); } else { config.msb_in_token = 0; config.lsb_in_token = 0; } config.split = 1 << config.split_exponent; return config; } ErrorOr read_symbol(LittleEndianInputBitStream& stream, u32 context) { u32 token {}; TRY(m_distributions.visit( [&](Vector const& distributions) -> ErrorOr { token = TRY(distributions[m_clusters[context]].read_symbol(stream)); return {}; }, [&](Vector const& distributions) -> ErrorOr { token = TRY(distributions[m_clusters[context]].read_symbol(stream, m_state)); return {}; })); return token; } ErrorOr read_pre_clustered_distributions(LittleEndianInputBitStream& stream, u32 num_distrib) { // C.2.2 Distribution clustering if (num_distrib == 1) { // If num_dist == 1, then num_clusters = 1 and clusters[0] = 0, and the remainder of this subclause is skipped. m_clusters = { 0 }; TRY(m_configs.try_resize(1)); return {}; }; TRY(m_clusters.try_resize(num_distrib)); bool const is_simple = TRY(stream.read_bit()); u16 num_clusters = 0; auto const read_clusters = [&](auto&& reader) -> ErrorOr { for (u32 i {}; i < num_distrib; ++i) { m_clusters[i] = TRY(reader()); if (m_clusters[i] >= num_clusters) num_clusters = m_clusters[i] + 1; } return {}; }; if (is_simple) { u8 const nbits = TRY(stream.read_bits(2)); TRY(read_clusters([nbits, &stream]() { return stream.read_bits(nbits); })); } else { auto const use_mtf = TRY(stream.read_bit()); if (num_distrib == 2) TODO(); auto decoder = TRY(EntropyDecoder::create(stream, 1)); TRY(read_clusters([&]() { return decoder.decode_hybrid_uint(stream, 0); })); if (use_mtf) TODO(); } TRY(m_configs.try_resize(num_clusters)); return {}; } bool m_lz77_enabled {}; Vector m_clusters; Vector m_configs; u8 m_log_alphabet_size { 15 }; Variant, Vector> m_distributions { Vector {} }; // D in the spec Optional m_state {}; }; /// /// H.4.2 - MA tree decoding class MATree { public: struct LeafNode { u32 ctx {}; u8 predictor {}; i32 offset {}; u32 multiplier {}; }; static ErrorOr decode(LittleEndianInputBitStream& stream, Optional& decoder) { // G.1.3 - GlobalModular MATree tree; // 1 / 2 Read the 6 pre-clustered distributions auto const num_distrib = 6; if (!decoder.has_value()) decoder = TRY(EntropyDecoder::create(stream, num_distrib)); // 2 / 2 Decode the tree u64 ctx_id = 0; u64 nodes_left = 1; tree.m_tree.clear(); while (nodes_left > 0) { nodes_left--; i32 const property = TRY(decoder->decode_hybrid_uint(stream, 1)) - 1; if (property >= 0) { DecisionNode decision_node; decision_node.property = property; decision_node.value = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 0))); decision_node.left_child = tree.m_tree.size() + nodes_left + 1; decision_node.right_child = tree.m_tree.size() + nodes_left + 2; tree.m_tree.empend(decision_node); nodes_left += 2; } else { LeafNode leaf_node; leaf_node.ctx = ctx_id++; leaf_node.predictor = TRY(decoder->decode_hybrid_uint(stream, 2)); leaf_node.offset = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 3))); auto const mul_log = TRY(decoder->decode_hybrid_uint(stream, 4)); auto const mul_bits = TRY(decoder->decode_hybrid_uint(stream, 5)); leaf_node.multiplier = (mul_bits + 1) << mul_log; tree.m_tree.empend(leaf_node); } } // Finally, the decoder reads (tree.size() + 1) / 2 pre-clustered distributions D as specified in C.1. auto const num_pre_clustered_distributions = (tree.m_tree.size() + 1) / 2; decoder = TRY(decoder->create(stream, num_pre_clustered_distributions)); return tree; } LeafNode get_leaf(Vector const& properties) const { // To find the MA leaf node, the MA tree is traversed, starting at the root node tree[0] // and for each decision node d, testing if property[d.property] > d.value, proceeding to // the node tree[d.left_child] if the test evaluates to true and to the node tree[d.right_child] // otherwise, until a leaf node is reached. DecisionNode node { m_tree[0].get() }; while (true) { auto const next_node = [this, &properties, &node]() { // Note: The behavior when trying to access a non-existing property is taken from jxl-oxide if (node.property < properties.size() && properties[node.property] > node.value) return m_tree[node.left_child]; return m_tree[node.right_child]; }(); if (next_node.has()) return next_node.get(); node = next_node.get(); } } private: struct DecisionNode { u64 property {}; i64 value {}; u64 left_child {}; u64 right_child {}; }; Vector> m_tree; }; /// /// H.5 - Self-correcting predictor struct WPHeader { u8 wp_p1 { 16 }; u8 wp_p2 { 10 }; u8 wp_p3a { 7 }; u8 wp_p3b { 7 }; u8 wp_p3c { 7 }; u8 wp_p3d { 0 }; u8 wp_p3e { 0 }; Array wp_w { 13, 12, 12, 12 }; }; static ErrorOr read_self_correcting_predictor(LittleEndianInputBitStream& stream) { WPHeader self_correcting_predictor {}; bool const default_wp = TRY(stream.read_bit()); if (!default_wp) { TODO(); } return self_correcting_predictor; } /// /// struct TransformInfo { enum class TransformId { kRCT = 0, kPalette = 1, kSqueeze = 2, }; TransformId tr {}; u32 begin_c {}; u32 rct_type {}; }; static ErrorOr read_transform_info(LittleEndianInputBitStream& stream) { TransformInfo transform_info; transform_info.tr = static_cast(TRY(stream.read_bits(2))); if (transform_info.tr != TransformInfo::TransformId::kSqueeze) { transform_info.begin_c = U32( TRY(stream.read_bits(3)), 8 + TRY(stream.read_bits(3)), 72 + TRY(stream.read_bits(10)), 1096 + TRY(stream.read_bits(13))); } if (transform_info.tr == TransformInfo::TransformId::kRCT) { transform_info.rct_type = U32( 6, TRY(stream.read_bits(2)), 2 + TRY(stream.read_bits(4)), 10 + TRY(stream.read_bits(6))); } if (transform_info.tr != TransformInfo::TransformId::kRCT) TODO(); return transform_info; } /// /// Local abstractions to store the decoded image class Channel { public: static ErrorOr create(u32 width, u32 height) { Channel channel; channel.m_width = width; channel.m_height = height; TRY(channel.m_pixels.try_resize(channel.m_width * channel.m_height)); return channel; } i32 get(u32 x, u32 y) const { return m_pixels[y * m_width + x]; } void set(u32 x, u32 y, i32 value) { m_pixels[y * m_width + x] = value; } u32 width() const { return m_width; } u32 height() const { return m_height; } u32 hshift() const { return m_hshift; } u32 vshift() const { return m_vshift; } bool decoded() const { return m_decoded; } void set_decoded(bool decoded) { m_decoded = decoded; } private: u32 m_width {}; u32 m_height {}; u32 m_hshift {}; u32 m_vshift {}; bool m_decoded { false }; Vector m_pixels {}; }; class Image { public: static ErrorOr create(IntSize size, ImageMetadata const& metadata) { Image image {}; for (u16 i = 0; i < metadata.number_of_channels(); ++i) { if (i < metadata.number_of_color_channels()) { TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height())))); } else { auto const dim_shift = metadata.ec_info[i - metadata.number_of_color_channels()].dim_shift; TRY(image.m_channels.try_append(TRY(Channel::create(size.width() >> dim_shift, size.height() >> dim_shift)))); } } return image; } ErrorOr> to_bitmap(ImageMetadata& metadata) const { // FIXME: which channel size should we use? auto const width = m_channels[0].width(); auto const height = m_channels[0].height(); auto const orientation = static_cast(metadata.orientation); auto oriented_bitmap = TRY(ExifOrientedBitmap::create(BitmapFormat::BGRA8888, { width, height }, orientation)); auto const alpha_channel = metadata.alpha_channel(); auto const bits_per_sample = metadata.bit_depth.bits_per_sample; VERIFY(bits_per_sample >= 8); for (u32 y {}; y < height; ++y) { for (u32 x {}; x < width; ++x) { auto const to_u8 = [&, bits_per_sample](i32 sample) -> u8 { // FIXME: Don't truncate the result to 8 bits static constexpr auto maximum_supported_bit_depth = 8; if (bits_per_sample > maximum_supported_bit_depth) sample >>= (bits_per_sample - maximum_supported_bit_depth); return clamp(sample + .5, 0, (1 << maximum_supported_bit_depth) - 1); }; auto const color = [&]() -> Color { if (!alpha_channel.has_value()) { return { to_u8(m_channels[0].get(x, y)), to_u8(m_channels[1].get(x, y)), to_u8(m_channels[2].get(x, y)) }; } return { to_u8(m_channels[0].get(x, y)), to_u8(m_channels[1].get(x, y)), to_u8(m_channels[2].get(x, y)), to_u8(m_channels[*alpha_channel].get(x, y)), }; }(); oriented_bitmap.set_pixel(x, y, color); } } return oriented_bitmap.bitmap(); } Vector& channels() { return m_channels; } private: Vector m_channels; }; /// /// H.5 - Self-correcting predictor struct Neighborhood { i32 N {}; i32 NW {}; i32 NE {}; i32 W {}; i32 NN {}; i32 WW {}; i32 NEE {}; }; class SelfCorrectingData { public: struct Predictions { i32 prediction {}; Array subpred {}; i32 max_error {}; i32 true_err {}; Array err {}; }; static ErrorOr create(WPHeader const& wp_params, u32 width) { SelfCorrectingData self_correcting_data { wp_params }; self_correcting_data.m_width = width; self_correcting_data.m_previous = TRY(FixedArray::create(width)); self_correcting_data.m_current_row = TRY(FixedArray::create(width)); self_correcting_data.m_next_row = TRY(FixedArray::create(width)); return self_correcting_data; } void register_next_row() { auto tmp = move(m_previous); m_previous = move(m_current_row); m_current_row = move(m_next_row); // We reuse m_previous to avoid an allocation, no values are kept // everything will be overridden. m_next_row = move(tmp); m_current_row_index++; } Predictions compute_predictions(Neighborhood const& neighborhood, u32 x) { auto& current_predictions = m_next_row[x]; auto const N3 = neighborhood.N << 3; auto const NW3 = neighborhood.NW << 3; auto const NE3 = neighborhood.NE << 3; auto const W3 = neighborhood.W << 3; auto const NN3 = neighborhood.NN << 3; auto const predictions_W = predictions_for(x, Direction::West); auto const predictions_N = predictions_for(x, Direction::North); auto const predictions_NE = predictions_for(x, Direction::NorthEast); auto const predictions_NW = predictions_for(x, Direction::NorthWest); auto const predictions_WW = predictions_for(x, Direction::WestWest); current_predictions.subpred[0] = W3 + NE3 - N3; current_predictions.subpred[1] = N3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NE.true_err) * wp_params.wp_p1) >> 5); current_predictions.subpred[2] = W3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NW.true_err) * wp_params.wp_p2) >> 5); current_predictions.subpred[3] = N3 - ((predictions_NW.true_err * wp_params.wp_p3a + predictions_N.true_err * wp_params.wp_p3b + predictions_NE.true_err * wp_params.wp_p3c + (NN3 - N3) * wp_params.wp_p3d + (NW3 - W3) * wp_params.wp_p3e) >> 5); auto const error2weight = [](i32 err_sum, u8 maxweight) -> i32 { i32 shift = floor(log2(err_sum + 1)) - 5; if (shift < 0) shift = 0; return 4 + ((static_cast(maxweight) * ((1 << 24) / ((err_sum >> shift) + 1))) >> shift); }; Array weight {}; for (u8 i = 0; i < weight.size(); ++i) { auto err_sum = predictions_N.err[i] + predictions_W.err[i] + predictions_NW.err[i] + predictions_WW.err[i] + predictions_NE.err[i]; if (x == m_width - 1) err_sum += predictions_W.err[i]; weight[i] = error2weight(err_sum, wp_params.wp_w[i]); } auto sum_weights = weight[0] + weight[1] + weight[2] + weight[3]; i32 const log_weight = floor(log2(sum_weights)) + 1; for (u8 i = 0; i < 4; i++) weight[i] = weight[i] >> (log_weight - 5); sum_weights = weight[0] + weight[1] + weight[2] + weight[3]; auto s = (sum_weights >> 1) - 1; for (u8 i = 0; i < 4; i++) s += current_predictions.subpred[i] * weight[i]; current_predictions.prediction = static_cast(s) * ((1 << 24) / sum_weights) >> 24; // if true_err_N, true_err_W and true_err_NW don't have the same sign if (((predictions_N.true_err ^ predictions_W.true_err) | (predictions_N.true_err ^ predictions_NW.true_err)) <= 0) { current_predictions.prediction = clamp(current_predictions.prediction, min(W3, min(N3, NE3)), max(W3, max(N3, NE3))); } auto& max_error = current_predictions.max_error; max_error = predictions_W.true_err; if (abs(predictions_N.true_err) > abs(max_error)) max_error = predictions_N.true_err; if (abs(predictions_NW.true_err) > abs(max_error)) max_error = predictions_NW.true_err; if (abs(predictions_NE.true_err) > abs(max_error)) max_error = predictions_NE.true_err; return current_predictions; } // H.5.1 - General void compute_errors(u32 x, i32 true_value) { auto& current_predictions = m_next_row[x]; current_predictions.true_err = current_predictions.prediction - (true_value << 3); for (u8 i = 0; i < 4; ++i) current_predictions.err[i] = (abs(current_predictions.subpred[i] - (true_value << 3)) + 3) >> 3; } private: SelfCorrectingData(WPHeader const& wp) : wp_params(wp) { } enum class Direction { North, NorthWest, NorthEast, West, NorthNorth, WestWest }; Predictions predictions_for(u32 x, Direction direction) const { // H.5.2 - Prediction auto const north = [&]() { return m_current_row_index < 1 ? Predictions {} : m_current_row[x]; }; switch (direction) { case Direction::North: return north(); case Direction::NorthWest: return x < 1 ? north() : m_current_row[x - 1]; case Direction::NorthEast: return x + 1 >= m_current_row.size() ? north() : m_current_row[x + 1]; case Direction::West: return x < 1 ? Predictions {} : m_next_row[x - 1]; case Direction::NorthNorth: return m_current_row_index < 2 ? Predictions {} : m_previous[x]; case Direction::WestWest: return x < 2 ? Predictions {} : m_next_row[x - 2]; } VERIFY_NOT_REACHED(); } WPHeader const& wp_params {}; u32 m_width {}; u32 m_current_row_index {}; FixedArray m_previous {}; FixedArray m_current_row {}; FixedArray m_next_row {}; }; /// /// H.2 - Image decoding struct ModularHeader { bool use_global_tree {}; WPHeader wp_params {}; Vector transform {}; }; static ErrorOr> get_properties(Vector const& channels, u16 i, u32 x, u32 y, i32 max_error) { Vector properties; // Table H.4 - Property definitions TRY(properties.try_append(i)); // FIXME: Handle other cases than GlobalModular TRY(properties.try_append(0)); TRY(properties.try_append(y)); TRY(properties.try_append(x)); i32 const W = x > 0 ? channels[i].get(x - 1, y) : (y > 0 ? channels[i].get(x, y - 1) : 0); i32 const N = y > 0 ? channels[i].get(x, y - 1) : W; i32 const NW = x > 0 && y > 0 ? channels[i].get(x - 1, y - 1) : W; i32 const NE = x + 1 < channels[i].width() && y > 0 ? channels[i].get(x + 1, y - 1) : N; i32 const NN = y > 1 ? channels[i].get(x, y - 2) : N; i32 const WW = x > 1 ? channels[i].get(x - 2, y) : W; TRY(properties.try_append(abs(N))); TRY(properties.try_append(abs(W))); TRY(properties.try_append(N)); TRY(properties.try_append(W)); // x > 0 ? W - /* (the value of property 9 at position (x - 1, y)) */ : W if (x > 0) { auto const x_1 = x - 1; i32 const W_x_1 = x_1 > 0 ? channels[i].get(x_1 - 1, y) : (y > 0 ? channels[i].get(x_1, y - 1) : 0); i32 const N_x_1 = y > 0 ? channels[i].get(x_1, y - 1) : W_x_1; i32 const NW_x_1 = x_1 > 0 && y > 0 ? channels[i].get(x_1 - 1, y - 1) : W_x_1; TRY(properties.try_append(W - (W_x_1 + N_x_1 - NW_x_1))); } else { TRY(properties.try_append(W)); } TRY(properties.try_append(W + N - NW)); TRY(properties.try_append(W - NW)); TRY(properties.try_append(NW - N)); TRY(properties.try_append(N - NE)); TRY(properties.try_append(N - NN)); TRY(properties.try_append(W - WW)); TRY(properties.try_append(max_error)); for (i16 j = i - 1; j >= 0; j--) { if (channels[j].width() != channels[i].width()) continue; if (channels[j].height() != channels[i].height()) continue; if (channels[j].hshift() != channels[i].hshift()) continue; if (channels[j].vshift() != channels[i].vshift()) continue; auto rC = channels[j].get(x, y); auto rW = (x > 0 ? channels[j].get(x - 1, y) : 0); auto rN = (y > 0 ? channels[j].get(x, y - 1) : rW); auto rNW = (x > 0 && y > 0 ? channels[j].get(x - 1, y - 1) : rW); auto rG = clamp(rW + rN - rNW, min(rW, rN), max(rW, rN)); TRY(properties.try_append(abs(rC))); TRY(properties.try_append(rC)); TRY(properties.try_append(abs(rC - rG))); TRY(properties.try_append(rC - rG)); } return properties; } static i32 prediction(Neighborhood const& neighborhood, i32 self_correcting, u32 predictor) { switch (predictor) { case 0: return 0; case 1: return neighborhood.W; case 2: return neighborhood.N; case 3: return (neighborhood.W + neighborhood.N) / 2; case 4: return abs(neighborhood.N - neighborhood.NW) < abs(neighborhood.W - neighborhood.NW) ? neighborhood.W : neighborhood.N; case 5: return clamp(neighborhood.W + neighborhood.N - neighborhood.NW, min(neighborhood.W, neighborhood.N), max(neighborhood.W, neighborhood.N)); case 6: return (self_correcting + 3) >> 3; case 7: return neighborhood.NE; case 8: return neighborhood.NW; case 9: return neighborhood.WW; case 10: return (neighborhood.W + neighborhood.NW) / 2; case 11: return (neighborhood.N + neighborhood.NW) / 2; case 12: return (neighborhood.N + neighborhood.NE) / 2; case 13: return (6 * neighborhood.N - 2 * neighborhood.NN + 7 * neighborhood.W + neighborhood.WW + neighborhood.NEE + 3 * neighborhood.NE + 8) / 16; } VERIFY_NOT_REACHED(); } static Neighborhood retrieve_neighborhood(Channel const& channel, u32 x, u32 y) { i32 const W = x > 0 ? channel.get(x - 1, y) : (y > 0 ? channel.get(x, y - 1) : 0); i32 const N = y > 0 ? channel.get(x, y - 1) : W; i32 const NW = x > 0 && y > 0 ? channel.get(x - 1, y - 1) : W; i32 const NE = x + 1 < channel.width() && y > 0 ? channel.get(x + 1, y - 1) : N; i32 const NN = y > 1 ? channel.get(x, y - 2) : N; i32 const WW = x > 1 ? channel.get(x - 2, y) : W; i32 const NEE = x + 2 < channel.width() && y > 0 ? channel.get(x + 2, y - 1) : NE; Neighborhood const neighborhood { .N = N, .NW = NW, .NE = NE, .W = W, .NN = NN, .WW = WW, .NEE = NEE, }; return neighborhood; } static ErrorOr read_modular_header(LittleEndianInputBitStream& stream, Image& image, Optional& decoder, MATree const& global_tree, u16 num_channels) { ModularHeader modular_header; modular_header.use_global_tree = TRY(stream.read_bit()); modular_header.wp_params = TRY(read_self_correcting_predictor(stream)); auto const nb_transforms = U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(8))); TRY(modular_header.transform.try_resize(nb_transforms)); for (u32 i {}; i < nb_transforms; ++i) modular_header.transform[i] = TRY(read_transform_info(stream)); Optional local_tree; if (!modular_header.use_global_tree) TODO(); // The decoder then starts an entropy-coded stream (C.1) and decodes the data for each channel // (in ascending order of index) as specified in H.3, skipping any channels having width or height // zero. Finally, the inverse transformations are applied (from last to first) as described in H.6. auto const& tree = local_tree.has_value() ? *local_tree : global_tree; for (u16 i {}; i < num_channels; ++i) { auto self_correcting_data = TRY(SelfCorrectingData::create(modular_header.wp_params, image.channels()[i].width())); for (u32 y {}; y < image.channels()[i].height(); y++) { for (u32 x {}; x < image.channels()[i].width(); x++) { auto const neighborhood = retrieve_neighborhood(image.channels()[i], x, y); auto const self_prediction = self_correcting_data.compute_predictions(neighborhood, x); auto const properties = TRY(get_properties(image.channels(), i, x, y, self_prediction.max_error)); auto const leaf_node = tree.get_leaf(properties); auto diff = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, leaf_node.ctx))); diff = (diff * leaf_node.multiplier) + leaf_node.offset; auto const total = diff + prediction(neighborhood, self_prediction.prediction, leaf_node.predictor); self_correcting_data.compute_errors(x, total); image.channels()[i].set(x, y, total); } self_correcting_data.register_next_row(); } image.channels()[i].set_decoded(true); } return modular_header; } /// /// G.1.2 - LF channel dequantization weights struct GlobalModular { MATree ma_tree; ModularHeader modular_header; }; static ErrorOr read_global_modular(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, ImageMetadata const& metadata, Optional& entropy_decoder) { GlobalModular global_modular; auto const decode_ma_tree = TRY(stream.read_bit()); if (decode_ma_tree) global_modular.ma_tree = TRY(MATree::decode(stream, entropy_decoder)); // The decoder then decodes a modular sub-bitstream (Annex H), where // the number of channels is computed as follows: auto num_channels = metadata.num_extra_channels; if (frame_header.encoding == FrameHeader::Encoding::kModular) { if (!frame_header.do_YCbCr && !metadata.xyb_encoded && metadata.colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) { num_channels += 1; } else { num_channels += 3; } } // FIXME: Ensure this spec comment: // However, the decoder only decodes the first nb_meta_channels channels and any further channels // that have a width and height that are both at most group_dim. At that point, it stops decoding. // No inverse transforms are applied yet. global_modular.modular_header = TRY(read_modular_header(stream, image, entropy_decoder, global_modular.ma_tree, num_channels)); return global_modular; } /// /// G.1 - LfGlobal struct LfGlobal { LfChannelDequantization lf_dequant; GlobalModular gmodular; }; static ErrorOr read_lf_global(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, ImageMetadata const& metadata, Optional& entropy_decoder) { LfGlobal lf_global; if (frame_header.flags != FrameHeader::Flags::None) TODO(); lf_global.lf_dequant = TRY(read_lf_channel_dequantization(stream)); if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) TODO(); lf_global.gmodular = TRY(read_global_modular(stream, image, frame_header, metadata, entropy_decoder)); return lf_global; } /// /// G.2 - LfGroup static ErrorOr read_lf_group(LittleEndianInputBitStream&, Image& image, FrameHeader const& frame_header) { // LF coefficients if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) { TODO(); } // ModularLfGroup for (auto const& channel : image.channels()) { if (channel.decoded()) continue; if (channel.hshift() < 3 || channel.vshift() < 3) continue; // This code actually only detect that we need to read a null image // so a no-op. It should be fully rewritten when we add proper support // for LfGroup. TODO(); } // HF metadata if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) { TODO(); } return {}; } /// /// H.6 - Transformations static void apply_rct(Image& image, TransformInfo const& transformation) { auto& channels = image.channels(); for (u32 y {}; y < channels[transformation.begin_c].height(); y++) { for (u32 x {}; x < channels[transformation.begin_c].width(); x++) { auto a = channels[transformation.begin_c + 0].get(x, y); auto b = channels[transformation.begin_c + 1].get(x, y); auto c = channels[transformation.begin_c + 2].get(x, y); i32 d {}; i32 e {}; i32 f {}; auto const permutation = transformation.rct_type / 7; auto const type = transformation.rct_type % 7; if (type == 6) { // YCgCo auto const tmp = a - (c >> 1); e = c + tmp; f = tmp - (b >> 1); d = f + b; } else { if (type & 1) c = c + a; if ((type >> 1) == 1) b = b + a; if ((type >> 1) == 2) b = b + ((a + c) >> 1); d = a; e = b; f = c; } Array v {}; v[permutation % 3] = d; v[(permutation + 1 + (permutation / 3)) % 3] = e; v[(permutation + 2 - (permutation / 3)) % 3] = f; channels[transformation.begin_c + 0].set(x, y, v[0]); channels[transformation.begin_c + 1].set(x, y, v[1]); channels[transformation.begin_c + 2].set(x, y, v[2]); } } } static void apply_transformation(Image& image, TransformInfo const& transformation) { switch (transformation.tr) { case TransformInfo::TransformId::kRCT: apply_rct(image, transformation); break; case TransformInfo::TransformId::kPalette: case TransformInfo::TransformId::kSqueeze: TODO(); default: VERIFY_NOT_REACHED(); } } /// /// G.3.2 - PassGroup static ErrorOr read_pass_group(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, u32 group_dim) { if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) { (void)stream; TODO(); } auto& channels = image.channels(); for (u16 i {}; i < channels.size(); ++i) { // Skip meta-channels // FIXME: Also test if the channel has already been decoded // See: nb_meta_channels in the spec bool const is_meta_channel = channels[i].width() <= group_dim || channels[i].height() <= group_dim || channels[i].hshift() >= 3 || channels[i].vshift() >= 3; if (!is_meta_channel) TODO(); } return {}; } /// /// Table F.1 — Frame bundle struct Frame { FrameHeader frame_header; TOC toc; LfGlobal lf_global; u64 width {}; u64 height {}; u64 num_groups {}; u64 num_lf_groups {}; }; static ErrorOr read_frame(LittleEndianInputBitStream& stream, Image& image, SizeHeader const& size_header, ImageMetadata const& metadata, Optional& entropy_decoder) { // F.1 - General // Each Frame is byte-aligned by invoking ZeroPadToByte() (B.2.7) stream.align_to_byte_boundary(); Frame frame; frame.frame_header = TRY(read_frame_header(stream, metadata)); if (!frame.frame_header.have_crop) { frame.width = size_header.width; frame.height = size_header.height; } else { TODO(); } if (frame.frame_header.upsampling > 1) { frame.width = ceil(static_cast(frame.width) / frame.frame_header.upsampling); frame.height = ceil(static_cast(frame.height) / frame.frame_header.upsampling); } if (frame.frame_header.lf_level > 0) TODO(); // F.2 - FrameHeader auto const group_dim = 128 << frame.frame_header.group_size_shift; auto const frame_width = static_cast(frame.width); auto const frame_height = static_cast(frame.height); frame.num_groups = ceil(frame_width / group_dim) * ceil(frame_height / group_dim); frame.num_lf_groups = ceil(frame_width / (group_dim * 8)) * ceil(frame_height / (group_dim * 8)); frame.toc = TRY(read_toc(stream, frame.frame_header, frame.num_groups, frame.num_lf_groups)); image = TRY(Image::create({ frame.width, frame.height }, metadata)); frame.lf_global = TRY(read_lf_global(stream, image, frame.frame_header, metadata, entropy_decoder)); for (u32 i {}; i < frame.num_lf_groups; ++i) TRY(read_lf_group(stream, image, frame.frame_header)); if (frame.frame_header.encoding == FrameHeader::Encoding::kVarDCT) { TODO(); } auto const num_pass_group = frame.num_groups * frame.frame_header.passes.num_passes; auto const& transform_infos = frame.lf_global.gmodular.modular_header.transform; for (u64 i {}; i < num_pass_group; ++i) TRY(read_pass_group(stream, image, frame.frame_header, group_dim)); // G.4.2 - Modular group data // When all modular groups are decoded, the inverse transforms are applied to // the at that point fully decoded GlobalModular image, as specified in H.6. for (auto const& transformation : transform_infos.in_reverse()) apply_transformation(image, transformation); return frame; } /// /// 5.2 - Mirroring static u32 mirror_1d(i32 coord, u32 size) { if (coord < 0) return mirror_1d(-coord - 1, size); else if (static_cast(coord) >= size) return mirror_1d(2 * size - 1 - coord, size); else return coord; } /// /// K - Image features static ErrorOr apply_upsampling(Image& image, ImageMetadata const& metadata, Frame const& frame) { Optional ec_max; for (auto upsampling : frame.frame_header.ec_upsampling) { if (!ec_max.has_value() || upsampling > *ec_max) ec_max = upsampling; } if (frame.frame_header.upsampling > 1 || ec_max.value_or(0) > 1) { if (ec_max.value_or(0) > 2) TODO(); auto const k = frame.frame_header.upsampling; auto weight = [k, &metadata](u8 index) -> double { if (k == 2) return metadata.up2_weight[index]; if (k == 4) return metadata.up4_weight[index]; return metadata.up8_weight[index]; }; // FIXME: Use ec_upsampling for extra-channels for (auto& channel : image.channels()) { auto upsampled = TRY(Channel::create(k * channel.width(), k * channel.height())); // Loop over the original image for (u32 y {}; y < channel.height(); y++) { for (u32 x {}; x < channel.width(); x++) { // Loop over the upsampling factor for (u8 kx {}; kx < k; ++kx) { for (u8 ky {}; ky < k; ++ky) { double sum {}; // Loop over the W window double W_min = NumericLimits::max(); double W_max = -NumericLimits::max(); for (u8 ix {}; ix < 5; ++ix) { for (u8 iy {}; iy < 5; ++iy) { auto const j = (ky < k / 2) ? (iy + 5 * ky) : ((4 - iy) + 5 * (k - 1 - ky)); auto const i = (kx < k / 2) ? (ix + 5 * kx) : ((4 - ix) + 5 * (k - 1 - kx)); auto const minimum = min(i, j); auto const maximum = max(i, j); auto const index = 5 * k * minimum / 2 - minimum * (minimum - 1) / 2 + maximum - minimum; auto const origin_sample_x = mirror_1d(x + ix - 2, channel.width()); auto const origin_sample_y = mirror_1d(y + iy - 2, channel.height()); auto const origin_sample = channel.get(origin_sample_x, origin_sample_y); W_min = min(W_min, origin_sample); W_max = max(W_max, origin_sample); sum += origin_sample * weight(index); } } // The resulting sample is clamped to the range [a, b] where a and b are // the minimum and maximum of the samples in W. sum = clamp(sum, W_min, W_max); upsampled.set(x * k + kx, y * k + ky, sum); } } } } channel = move(upsampled); } } return {}; } static ErrorOr apply_image_features(Image& image, ImageMetadata const& metadata, Frame const& frame) { TRY(apply_upsampling(image, metadata, frame)); if (frame.frame_header.flags != FrameHeader::Flags::None) TODO(); return {}; } /// /// L.4 - Extra channel rendering static ErrorOr render_extra_channels(Image&, ImageMetadata const& metadata) { for (u16 i = metadata.number_of_color_channels(); i < metadata.number_of_channels(); ++i) { auto const ec_index = i - metadata.number_of_color_channels(); if (metadata.ec_info[ec_index].dim_shift != 0) TODO(); } return {}; } /// class JPEGXLLoadingContext { public: JPEGXLLoadingContext(NonnullOwnPtr stream) : m_stream(move(stream)) { } ErrorOr decode_image_header() { constexpr auto JPEGXL_SIGNATURE = 0xFF0A; auto const signature = TRY(m_stream.read_value>()); if (signature != JPEGXL_SIGNATURE) return Error::from_string_literal("Unrecognized signature"); m_header = TRY(read_size_header(m_stream)); m_metadata = TRY(read_metadata_header(m_stream)); m_state = State::HeaderDecoded; return {}; } ErrorOr decode_frame() { Image image {}; auto const frame = TRY(read_frame(m_stream, image, m_header, m_metadata, m_entropy_decoder)); if (frame.frame_header.restoration_filter.gab || frame.frame_header.restoration_filter.epf_iters != 0) TODO(); TRY(apply_image_features(image, m_metadata, frame)); // FIXME: Do a proper color transformation with metadata.colour_encoding if (m_metadata.xyb_encoded || frame.frame_header.do_YCbCr) TODO(); TRY(render_extra_channels(image, m_metadata)); m_bitmap = TRY(image.to_bitmap(m_metadata)); return {}; } ErrorOr decode() { auto result = [this]() -> ErrorOr { // A.1 - Codestream structure // The header is already decoded in JPEGXLImageDecoderPlugin::create() if (m_metadata.colour_encoding.want_icc) TODO(); if (m_metadata.preview.has_value()) TODO(); TRY(decode_frame()); return {}; }(); m_state = result.is_error() ? State::Error : State::FrameDecoded; return result; } enum class State { NotDecoded = 0, Error, HeaderDecoded, FrameDecoded, }; State state() const { return m_state; } IntSize size() const { return { m_header.width, m_header.height }; } RefPtr bitmap() const { return m_bitmap; } private: State m_state { State::NotDecoded }; LittleEndianInputBitStream m_stream; RefPtr m_bitmap; Optional m_entropy_decoder {}; SizeHeader m_header; ImageMetadata m_metadata; FrameHeader m_frame_header; TOC m_toc; }; JPEGXLImageDecoderPlugin::JPEGXLImageDecoderPlugin(NonnullOwnPtr stream) { m_context = make(move(stream)); } JPEGXLImageDecoderPlugin::~JPEGXLImageDecoderPlugin() = default; IntSize JPEGXLImageDecoderPlugin::size() { return m_context->size(); } bool JPEGXLImageDecoderPlugin::sniff(ReadonlyBytes data) { return data.size() > 2 && data.data()[0] == 0xFF && data.data()[1] == 0x0A; } ErrorOr> JPEGXLImageDecoderPlugin::create(ReadonlyBytes data) { auto stream = TRY(try_make(data)); auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JPEGXLImageDecoderPlugin(move(stream)))); TRY(plugin->m_context->decode_image_header()); return plugin; } bool JPEGXLImageDecoderPlugin::is_animated() { return false; } size_t JPEGXLImageDecoderPlugin::loop_count() { return 0; } size_t JPEGXLImageDecoderPlugin::frame_count() { return 1; } size_t JPEGXLImageDecoderPlugin::first_animated_frame_index() { return 0; } ErrorOr JPEGXLImageDecoderPlugin::frame(size_t index, Optional) { if (index > 0) return Error::from_string_literal("JPEGXLImageDecoderPlugin: Invalid frame index"); if (m_context->state() == JPEGXLLoadingContext::State::Error) return Error::from_string_literal("JPEGXLImageDecoderPlugin: Decoding failed"); if (m_context->state() < JPEGXLLoadingContext::State::FrameDecoded) TRY(m_context->decode()); return ImageFrameDescriptor { m_context->bitmap(), 0 }; } ErrorOr> JPEGXLImageDecoderPlugin::icc_data() { return OptionalNone {}; } }