/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include // Kernel and Userspace pull in the definitions from different places. // Avoid trying to figure out which one. struct timeval; struct timespec; #if defined(AK_OS_WINDOWS) # include #endif namespace AK { // Concept to detect types which look like timespec without requiring the type. template concept TimeSpecType = requires(T t) { t.tv_sec; t.tv_nsec; }; constexpr bool is_leap_year(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // Month and day start at 1. Month must be >= 1 and <= 12. // The return value is 0-indexed, that is 0 is Sunday, 1 is Monday, etc. // Day may be negative or larger than the number of days // in the given month. unsigned day_of_week(int year, unsigned month, int day); // Month and day start at 1. Month must be >= 1 and <= 12. // The return value is 0-indexed, that is Jan 1 is day 0. // Day may be negative or larger than the number of days // in the given month. If day is negative enough, the result // can be negative. constexpr int day_of_year(int year, unsigned month, int day) { VERIFY(month >= 1 && month <= 12); constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int day_of_year = seek_table[month - 1] + day - 1; if (is_leap_year(year) && month >= 3) day_of_year++; return day_of_year; } // Month starts at 1. Month must be >= 1 and <= 12. int days_in_month(int year, unsigned month); constexpr int days_in_year(int year) { return 365 + (is_leap_year(year) ? 1 : 0); } namespace Detail { // Integer division rounding towards negative infinity. // TODO: This feels like there should be an easier way to do this. template constexpr int floor_div_by(int dividend) { static_assert(divisor >= 1); int is_negative = dividend < 0; return (dividend + is_negative) / divisor - is_negative; } // Counts how many integers n are in the interval [begin, end) with n % positive_mod == 0. // NOTE: "end" is not considered to be part of the range, hence "[begin, end)". template constexpr int mod_zeros_in_range(int begin, int end) { return floor_div_by(end - 1) - floor_div_by(begin - 1); } } constexpr int years_to_days_since_epoch(int year) { int begin_year, end_year, leap_sign; if (year < 1970) { begin_year = year; end_year = 1970; leap_sign = -1; } else { begin_year = 1970; end_year = year; leap_sign = +1; } // This duplicates the logic of 'is_leap_year', with the advantage of not needing any loops. // Given that the definition of leap years is not expected to change, this should be a good trade-off. int days = 365 * (year - 1970); int extra_leap_days = 0; extra_leap_days += Detail::mod_zeros_in_range<4>(begin_year, end_year); extra_leap_days -= Detail::mod_zeros_in_range<100>(begin_year, end_year); extra_leap_days += Detail::mod_zeros_in_range<400>(begin_year, end_year); return days + extra_leap_days * leap_sign; } constexpr int days_since_epoch(int year, int month, int day) { return years_to_days_since_epoch(year) + day_of_year(year, month, day); } constexpr i64 seconds_since_epoch_to_year(i64 seconds) { constexpr double seconds_per_year = 60.0 * 60.0 * 24.0 * 365.2425; // NOTE: We are not using floor() from to avoid LibC / DynamicLoader dependency issues. auto round_down = [](double value) -> i64 { auto as_i64 = static_cast(value); if ((value == as_i64) || (as_i64 >= 0)) return as_i64; return as_i64 - 1; }; auto years_since_epoch = static_cast(seconds) / seconds_per_year; return 1970 + round_down(years_since_epoch); } /* * Represents a time amount in a "safe" way. * Minimum: 0 seconds, 0 nanoseconds * Maximum: 2**63-1 seconds, 999'999'999 nanoseconds * If any operation (e.g. 'from_timeval' or operator-) would over- or underflow, the closest legal value is returned instead. * Inputs (e.g. to 'from_timespec') are allowed to be in non-normal form (e.g. "1 second, 2'012'345'678 nanoseconds" or "1 second, -2 microseconds"). * Outputs (e.g. from 'to_timeval') are always in normal form. */ class Time { public: Time() = default; Time(Time const&) = default; Time& operator=(Time const&) = default; Time(Time&& other) : m_seconds(exchange(other.m_seconds, 0)) , m_nanoseconds(exchange(other.m_nanoseconds, 0)) { } Time& operator=(Time&& other) { if (this != &other) { m_seconds = exchange(other.m_seconds, 0); m_nanoseconds = exchange(other.m_nanoseconds, 0); } return *this; } private: // This must be part of the header in order to make the various 'from_*' functions constexpr. // However, sane_mod can only deal with a limited range of values for 'denominator', so this can't be made public. ALWAYS_INLINE static constexpr i64 sane_mod(i64& numerator, i64 denominator) { VERIFY(2 <= denominator && denominator <= 1'000'000'000); // '%' in C/C++ does not work in the obvious way: // For example, -9 % 7 is -2, not +5. // However, we want a representation like "(-2)*7 + (+5)". i64 dividend = numerator / denominator; numerator %= denominator; if (numerator < 0) { // Does not overflow: different signs. numerator += denominator; // Does not underflow: denominator >= 2. dividend -= 1; } return dividend; } ALWAYS_INLINE static constexpr i32 sane_mod(i32& numerator, i32 denominator) { i64 numerator_64 = numerator; i64 dividend = sane_mod(numerator_64, denominator); // Does not underflow: numerator can only become smaller. numerator = static_cast(numerator_64); // Does not overflow: Will be smaller than original value of 'numerator'. return static_cast(dividend); } public: [[nodiscard]] constexpr static Time from_timestamp(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond) { constexpr auto milliseconds_per_day = 86'400'000; constexpr auto milliseconds_per_hour = 3'600'000; constexpr auto milliseconds_per_minute = 60'000; constexpr auto milliseconds_per_second = 1'000; i64 milliseconds_since_epoch = days_since_epoch(year, month, day); milliseconds_since_epoch *= milliseconds_per_day; milliseconds_since_epoch += hour * milliseconds_per_hour; milliseconds_since_epoch += minute * milliseconds_per_minute; milliseconds_since_epoch += second * milliseconds_per_second; milliseconds_since_epoch += millisecond; return from_milliseconds(milliseconds_since_epoch); } [[nodiscard]] constexpr static Time from_seconds(i64 seconds) { return Time(seconds, 0); } [[nodiscard]] constexpr static Time from_nanoseconds(i64 nanoseconds) { i64 seconds = sane_mod(nanoseconds, 1'000'000'000); return Time(seconds, nanoseconds); } [[nodiscard]] constexpr static Time from_microseconds(i64 microseconds) { i64 seconds = sane_mod(microseconds, 1'000'000); return Time(seconds, microseconds * 1'000); } [[nodiscard]] constexpr static Time from_milliseconds(i64 milliseconds) { i64 seconds = sane_mod(milliseconds, 1'000); return Time(seconds, milliseconds * 1'000'000); } [[nodiscard]] static Time from_ticks(clock_t, time_t); [[nodiscard]] static Time from_timespec(const struct timespec&); [[nodiscard]] static Time from_timeval(const struct timeval&); // We don't pull in for the pretty min/max definitions because this file is also included in the Kernel [[nodiscard]] constexpr static Time min() { return Time(-__INT64_MAX__ - 1LL, 0); }; [[nodiscard]] constexpr static Time zero() { return Time(0, 0); }; [[nodiscard]] constexpr static Time max() { return Time(__INT64_MAX__, 999'999'999); }; #ifndef KERNEL [[nodiscard]] static Time now_realtime(); [[nodiscard]] static Time now_realtime_coarse(); [[nodiscard]] static Time now_monotonic(); [[nodiscard]] static Time now_monotonic_coarse(); #endif // Truncates towards zero (2.8s to 2s, -2.8s to -2s). [[nodiscard]] i64 to_truncated_seconds() const; [[nodiscard]] i64 to_truncated_milliseconds() const; [[nodiscard]] i64 to_truncated_microseconds() const; // Rounds away from zero (2.3s to 3s, -2.3s to -3s). [[nodiscard]] i64 to_seconds() const; [[nodiscard]] i64 to_milliseconds() const; [[nodiscard]] i64 to_microseconds() const; [[nodiscard]] i64 to_nanoseconds() const; [[nodiscard]] timespec to_timespec() const; // Rounds towards -inf (it was the easiest to implement). [[nodiscard]] timeval to_timeval() const; [[nodiscard]] bool is_zero() const { return (m_seconds == 0) && (m_nanoseconds == 0); } [[nodiscard]] bool is_negative() const { return m_seconds < 0; } bool operator==(Time const& other) const { return this->m_seconds == other.m_seconds && this->m_nanoseconds == other.m_nanoseconds; } Time operator+(Time const& other) const; Time& operator+=(Time const& other); Time operator-(Time const& other) const; Time& operator-=(Time const& other); bool operator<(Time const& other) const; bool operator<=(Time const& other) const; bool operator>(Time const& other) const; bool operator>=(Time const& other) const; private: constexpr explicit Time(i64 seconds, u32 nanoseconds) : m_seconds(seconds) , m_nanoseconds(nanoseconds) { } [[nodiscard]] static Time from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds); i64 m_seconds { 0 }; u32 m_nanoseconds { 0 }; // Always less than 1'000'000'000 }; template inline void timeval_sub(TimevalType const& a, TimevalType const& b, TimevalType& result) { result.tv_sec = a.tv_sec - b.tv_sec; result.tv_usec = a.tv_usec - b.tv_usec; if (result.tv_usec < 0) { --result.tv_sec; result.tv_usec += 1'000'000; } } template inline void timeval_add(TimevalType const& a, TimevalType const& b, TimevalType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_usec = a.tv_usec + b.tv_usec; if (result.tv_usec >= 1'000'000) { ++result.tv_sec; result.tv_usec -= 1'000'000; } } template inline void timespec_sub(TimespecType const& a, TimespecType const& b, TimespecType& result) { result.tv_sec = a.tv_sec - b.tv_sec; result.tv_nsec = a.tv_nsec - b.tv_nsec; if (result.tv_nsec < 0) { --result.tv_sec; result.tv_nsec += 1'000'000'000; } } template inline void timespec_add(TimespecType const& a, TimespecType const& b, TimespecType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_nsec = a.tv_nsec + b.tv_nsec; if (result.tv_nsec >= 1000'000'000) { ++result.tv_sec; result.tv_nsec -= 1000'000'000; } } template inline void timespec_add_timeval(TimespecType const& a, TimevalType const& b, TimespecType& result) { result.tv_sec = a.tv_sec + b.tv_sec; result.tv_nsec = a.tv_nsec + b.tv_usec * 1000; if (result.tv_nsec >= 1000'000'000) { ++result.tv_sec; result.tv_nsec -= 1000'000'000; } } template inline void timeval_to_timespec(TimevalType const& tv, TimespecType& ts) { ts.tv_sec = tv.tv_sec; ts.tv_nsec = tv.tv_usec * 1000; } template inline void timespec_to_timeval(TimespecType const& ts, TimevalType& tv) { tv.tv_sec = ts.tv_sec; tv.tv_usec = ts.tv_nsec / 1000; } template inline bool operator>=(T const& a, T const& b) { return a.tv_sec > b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec >= b.tv_nsec); } template inline bool operator>(T const& a, T const& b) { return a.tv_sec > b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec > b.tv_nsec); } template inline bool operator<(T const& a, T const& b) { return a.tv_sec < b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec < b.tv_nsec); } template inline bool operator<=(T const& a, T const& b) { return a.tv_sec < b.tv_sec || (a.tv_sec == b.tv_sec && a.tv_nsec <= b.tv_nsec); } template inline bool operator==(T const& a, T const& b) { return a.tv_sec == b.tv_sec && a.tv_nsec == b.tv_nsec; } template inline bool operator!=(T const& a, T const& b) { return a.tv_sec != b.tv_sec || a.tv_nsec != b.tv_nsec; } } #if USING_AK_GLOBALLY using AK::day_of_week; using AK::day_of_year; using AK::days_in_month; using AK::days_in_year; using AK::days_since_epoch; using AK::is_leap_year; using AK::seconds_since_epoch_to_year; using AK::Time; using AK::timespec_add; using AK::timespec_add_timeval; using AK::timespec_sub; using AK::timespec_to_timeval; using AK::timeval_add; using AK::timeval_sub; using AK::timeval_to_timespec; using AK::years_to_days_since_epoch; using AK::operator<=; using AK::operator<; using AK::operator>; using AK::operator>=; using AK::operator==; using AK::operator!=; #endif