/* * Copyright (c) 2020, the SerenityOS developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include namespace AK { class InputMemoryStream final : public InputStream { public: explicit InputMemoryStream(ReadonlyBytes bytes) : m_bytes(bytes) { } bool unreliable_eof() const override { return eof(); } bool eof() const { return m_offset >= m_bytes.size(); } size_t read(Bytes bytes) override { if (has_any_error()) return 0; const auto count = min(bytes.size(), remaining()); __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count); m_offset += count; return count; } bool read_or_error(Bytes bytes) override { if (remaining() < bytes.size()) { set_recoverable_error(); return false; } __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size()); m_offset += bytes.size(); return true; } bool discard_or_error(size_t count) override { if (remaining() < count) { set_recoverable_error(); return false; } m_offset += count; return true; } void seek(size_t offset) { ASSERT(offset < m_bytes.size()); m_offset = offset; } u8 peek_or_error() const { if (remaining() == 0) { set_recoverable_error(); return 0; } return m_bytes[m_offset]; } bool read_LEB128_unsigned(size_t& result) { const auto backup = m_offset; result = 0; size_t num_bytes = 0; while (true) { if (eof()) { m_offset = backup; set_recoverable_error(); return false; } const u8 byte = m_bytes[m_offset]; result = (result) | (static_cast(byte & ~(1 << 7)) << (num_bytes * 7)); ++m_offset; if (!(byte & (1 << 7))) break; ++num_bytes; } return true; } bool read_LEB128_signed(ssize_t& result) { const auto backup = m_offset; result = 0; size_t num_bytes = 0; u8 byte = 0; do { if (eof()) { m_offset = backup; set_recoverable_error(); return false; } byte = m_bytes[m_offset]; result = (result) | (static_cast(byte & ~(1 << 7)) << (num_bytes * 7)); ++m_offset; ++num_bytes; } while (byte & (1 << 7)); if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) { // sign extend result |= ((size_t)(-1) << (num_bytes * 7)); } return true; } ReadonlyBytes bytes() const { return m_bytes; } size_t offset() const { return m_offset; } size_t remaining() const { return m_bytes.size() - m_offset; } private: ReadonlyBytes m_bytes; size_t m_offset { 0 }; }; class OutputMemoryStream final : public OutputStream { public: explicit OutputMemoryStream(Bytes bytes) : m_bytes(bytes) { } size_t write(ReadonlyBytes bytes) override { const auto nwritten = bytes.copy_trimmed_to(m_bytes.slice(m_offset)); m_offset += nwritten; return nwritten; } bool write_or_error(ReadonlyBytes bytes) override { if (remaining() < bytes.size()) { set_recoverable_error(); return false; } write(bytes); return true; } size_t fill_to_end(u8 value) { const auto nwritten = m_bytes.slice(m_offset).fill(value); m_offset += nwritten; return nwritten; } bool is_end() const { return remaining() == 0; } ReadonlyBytes bytes() const { return { data(), size() }; } Bytes bytes() { return { data(), size() }; } const u8* data() const { return m_bytes.data(); } u8* data() { return m_bytes.data(); } size_t size() const { return m_offset; } size_t remaining() const { return m_bytes.size() - m_offset; } private: size_t m_offset { 0 }; Bytes m_bytes; }; class DuplexMemoryStream final : public DuplexStream { public: static constexpr size_t chunk_size = 4 * 1024; bool unreliable_eof() const override { return eof(); } bool eof() const { return m_write_offset == m_read_offset; } bool discard_or_error(size_t count) override { if (m_write_offset - m_read_offset < count) { set_recoverable_error(); return false; } m_read_offset += count; try_discard_chunks(); return true; } Optional offset_of(ReadonlyBytes value) const { // We can't directly pass m_chunks to memmem since we have a limited read/write range we want to search in. Vector spans; auto chunk_index = (m_read_offset - m_base_offset) / chunk_size; auto chunk_read_offset = (m_read_offset - m_base_offset) % chunk_size; auto bytes_to_search = m_write_offset - m_read_offset; for (; bytes_to_search > 0;) { ReadonlyBytes span = m_chunks[chunk_index]; if (chunk_read_offset) { span = span.slice(chunk_read_offset); chunk_read_offset = 0; } if (bytes_to_search < span.size()) { spans.append(span.slice(0, bytes_to_search)); break; } bytes_to_search -= span.size(); spans.append(move(span)); ++chunk_index; } return memmem(spans.begin(), spans.end(), value); } size_t read_without_consuming(Bytes bytes) const { size_t nread = 0; while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) { const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size; const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread); nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread)); } return nread; } size_t read(Bytes bytes) override { if (has_any_error()) return 0; const auto nread = read_without_consuming(bytes); m_read_offset += nread; try_discard_chunks(); return nread; } bool read_or_error(Bytes bytes) override { if (m_write_offset - m_read_offset < bytes.size()) { set_recoverable_error(); return false; } read(bytes); return true; } size_t write(ReadonlyBytes bytes) override { size_t nwritten = 0; while (bytes.size() - nwritten > 0) { if ((m_write_offset + nwritten) % chunk_size == 0) m_chunks.append(ByteBuffer::create_uninitialized(chunk_size)); nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size)); } m_write_offset += nwritten; return nwritten; } bool write_or_error(ReadonlyBytes bytes) override { write(bytes); return true; } ByteBuffer copy_into_contiguous_buffer() const { auto buffer = ByteBuffer::create_uninitialized(size()); const auto nread = read_without_consuming(buffer); ASSERT(nread == buffer.size()); return buffer; } size_t roffset() const { return m_read_offset; } size_t woffset() const { return m_write_offset; } size_t size() const { return m_write_offset - m_read_offset; } private: void try_discard_chunks() { while (m_read_offset - m_base_offset >= chunk_size) { m_chunks.take_first(); m_base_offset += chunk_size; } } Vector m_chunks; size_t m_write_offset { 0 }; size_t m_read_offset { 0 }; size_t m_base_offset { 0 }; }; } using AK::DuplexMemoryStream; using AK::InputMemoryStream; using AK::InputStream; using AK::OutputMemoryStream;