/* * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include namespace AK { template union FloatExtractor; #ifdef AK_HAS_FLOAT_128 template<> union FloatExtractor { using ComponentType = unsigned __int128; static constexpr int mantissa_bits = 112; static constexpr ComponentType mantissa_max = (((ComponentType)1) << 112) - 1; static constexpr int exponent_bias = 16383; static constexpr int exponent_bits = 15; static constexpr unsigned exponent_max = 32767; struct [[gnu::packed]] { # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ComponentType sign : 1; ComponentType exponent : 15; ComponentType mantissa : 112; # else ComponentType mantissa : 112; ComponentType exponent : 15; ComponentType sign : 1; # endif }; f128 d; }; // Validate that f128 and the FloatExtractor union are 128 bits. static_assert(AssertSize()); static_assert(AssertSize, sizeof(f128)>()); #endif #ifdef AK_HAS_FLOAT_80 template<> union FloatExtractor { using ComponentType = unsigned long long; static constexpr int mantissa_bits = 64; static constexpr ComponentType mantissa_max = ~0ull; static constexpr int exponent_bias = 16383; static constexpr int exponent_bits = 15; static constexpr unsigned exponent_max = 32767; struct [[gnu::packed]] { // This is technically wrong: Extended floating point values really only have 63 bits of mantissa // and an "integer bit" that behaves in various strange, unintuitive and non-IEEE-754 ways. // However, since all bit-fiddling float code assumes IEEE floats, it cannot handle this properly. // If we pretend that 80-bit floats are IEEE floats with 64-bit mantissas, almost everything works correctly // and we just need a few special cases. # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ComponentType sign : 1; ComponentType exponent : 15; ComponentType mantissa : 64; # else ComponentType mantissa : 64; ComponentType exponent : 15; ComponentType sign : 1; # endif }; f80 d; }; static_assert(AssertSize, sizeof(f80)>()); #endif template<> union FloatExtractor { using ComponentType = unsigned long long; static constexpr int mantissa_bits = 52; static constexpr ComponentType mantissa_max = (1ull << 52) - 1; static constexpr int exponent_bias = 1023; static constexpr int exponent_bits = 11; static constexpr unsigned exponent_max = 2047; struct [[gnu::packed]] { // FIXME: These types have to all be the same, otherwise this struct // goes from being a bitfield describing the layout of an f64 // into being a multibyte mess on windows. // Technically, '-mno-ms-bitfields' is supposed to disable this // very intuitive and portable behaviour on windows, but it doesn't // work with the msvc ABI. // See #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ComponentType sign : 1; ComponentType exponent : 11; ComponentType mantissa : 52; #else ComponentType mantissa : 52; ComponentType exponent : 11; ComponentType sign : 1; #endif }; f64 d; }; static_assert(AssertSize, sizeof(f64)>()); template<> union FloatExtractor { using ComponentType = unsigned; static constexpr int mantissa_bits = 23; static constexpr ComponentType mantissa_max = (1 << 23) - 1; static constexpr int exponent_bias = 127; static constexpr int exponent_bits = 8; static constexpr ComponentType exponent_max = 255; struct [[gnu::packed]] { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ComponentType sign : 1; ComponentType exponent : 8; ComponentType mantissa : 23; #else ComponentType mantissa : 23; ComponentType exponent : 8; ComponentType sign : 1; #endif }; f32 d; }; static_assert(AssertSize, sizeof(f32)>()); template requires(S <= 1 && E >= 1 && M >= 1 && (S + E + M) <= 64) class FloatingPointBits final { public: static size_t const signbit = S; static size_t const exponentbits = E; static size_t const mantissabits = M; template requires(IsIntegral && IsUnsigned && sizeof(T) <= 8) constexpr FloatingPointBits(T bits) : m_bits(bits) { } constexpr FloatingPointBits(double value) : m_bits(bit_cast(value)) { } constexpr FloatingPointBits(float value) : m_bits(bit_cast(value)) { } double as_double() const requires(S == 1 && E == 11 && M == 52) { return bit_cast(m_bits); } float as_float() const requires(S == 1 && E == 8 && M == 23) { return bit_cast(static_cast(m_bits)); } u64 bits() const { return m_bits; } private: u64 m_bits; }; typedef FloatingPointBits<1, 8, 23> SingleFloatingPointBits; typedef FloatingPointBits<1, 11, 52> DoubleFloatingPointBits; /** * Convert between two IEEE 754 floating point types in any arrangement of sign, exponent and mantissa bits. */ template constexpr To float_to_float(From const input) { constexpr u64 from_exponent_nonnumber = (1ull << From::exponentbits) - 1; constexpr u64 from_exponent_bias = (1ull << (From::exponentbits - 1)) - 1; constexpr u64 to_exponent_nonnumber = (1ull << To::exponentbits) - 1; constexpr u64 to_exponent_bias = (1ull << (To::exponentbits - 1)) - 1; constexpr u64 to_exponent_max = (1ull << To::exponentbits) - 2; // Deconstruct input bits to float components u64 from_sign = (input.bits() >> (From::exponentbits + From::mantissabits)) & From::signbit; u64 from_exponent = (input.bits() >> From::mantissabits) & ((1ull << From::exponentbits) - 1); u64 from_mantissa = input.bits() & ((1ull << From::mantissabits) - 1); u64 to_sign = from_sign & To::signbit; u64 to_exponent; u64 to_mantissa; auto target_value = [&to_sign, &to_exponent, &to_mantissa]() { return To((to_sign << (To::exponentbits + To::mantissabits)) | (to_exponent << To::mantissabits) | to_mantissa); }; auto shift_mantissa = [](u64 mantissa) -> u64 { if constexpr (From::mantissabits < To::mantissabits) return mantissa << (To::mantissabits - From::mantissabits); else return mantissa >> (From::mantissabits - To::mantissabits); }; // If target is unsigned and source is negative, clamp to 0 or keep NaN if constexpr (To::signbit == 0) { if (from_sign == 1) { if (from_exponent == from_exponent_nonnumber && from_mantissa > 0) { to_exponent = to_exponent_nonnumber; to_mantissa = 1; } else { to_exponent = 0; to_mantissa = 0; } return target_value(); } } // If the source floating point is denormalized; if (from_exponent == 0) { // If the source mantissa is 0, the value is +/-0 if (from_mantissa == 0) { to_exponent = 0; to_mantissa = 0; return target_value(); } // If the source has more exponent bits than the target, then the largest possible // source mantissa still cannot be represented in the target denormalized value. if constexpr (From::exponentbits > To::exponentbits) { to_exponent = 0; to_mantissa = 0; return target_value(); } // If the source and target have the same number of exponent bits, we only need to // shift the mantissa. if constexpr (From::exponentbits == To::exponentbits) { to_exponent = 0; to_mantissa = shift_mantissa(from_mantissa); return target_value(); } // The target has more exponent bits, so our denormalized value can be represented // as a normalized value in the target floating point. Normalized values have an // implicit leading 1, so we shift the mantissa left until we find our explicit // leading 1 which is then dropped. int adjust_exponent = -1; to_mantissa = from_mantissa; do { ++adjust_exponent; to_mantissa <<= 1; } while ((to_mantissa & (1ull << From::mantissabits)) == 0); to_exponent = to_exponent_bias - from_exponent_bias - adjust_exponent; // Drop the most significant bit from the mantissa to_mantissa &= (1ull << From::mantissabits) - 1; to_mantissa = shift_mantissa(to_mantissa); return target_value(); } // If the source is NaN or +/-Inf, keep it that way if (from_exponent == from_exponent_nonnumber) { to_exponent = to_exponent_nonnumber; to_mantissa = (from_mantissa == 0) ? 0 : 1; return target_value(); } // Determine the target exponent to_exponent = to_exponent_bias - from_exponent_bias + from_exponent; // If the calculated exponent exceeds the target's capacity, clamp both the exponent and the // mantissa to their maximum values. if (to_exponent > to_exponent_max) { to_exponent = to_exponent_max; to_mantissa = (1ull << To::mantissabits) - 1; return target_value(); } // If the new exponent is less than 1, we can only represent this value as a denormalized number if (to_exponent < 1) { to_exponent = 0; // Add a leading 1 and shift the mantissa right int adjust_exponent = 1 - to_exponent_bias - from_exponent + from_exponent_bias; to_mantissa = ((1ull << From::mantissabits) | from_mantissa) >> adjust_exponent; to_mantissa = shift_mantissa(to_mantissa); return target_value(); } // New exponent fits; shift the mantissa to fit as well to_mantissa = shift_mantissa(from_mantissa); return target_value(); } template constexpr O convert_from_native_double(double input) { return float_to_float(DoubleFloatingPointBits(input)); } template constexpr O convert_from_native_float(float input) { return float_to_float(SingleFloatingPointBits(input)); } template constexpr double convert_to_native_double(I input) { return float_to_float(input).as_double(); } template constexpr float convert_to_native_float(I input) { return float_to_float(input).as_float(); } } #if USING_AK_GLOBALLY using AK::DoubleFloatingPointBits; using AK::FloatExtractor; using AK::FloatingPointBits; using AK::SingleFloatingPointBits; using AK::convert_from_native_double; using AK::convert_from_native_float; using AK::convert_to_native_double; using AK::convert_to_native_float; using AK::float_to_float; #endif