#pragma once #include "types.h" #include "TSS.h" #include "i386.h" #include "TTY.h" #include "Syscall.h" #include #include #include #include #include #include #include #include class FileDescriptor; class PageDirectory; class Region; class VMObject; class Zone; class WSWindow; class GraphicsBitmap; #define COOL_GLOBALS #ifdef COOL_GLOBALS struct CoolGlobals { pid_t current_pid; }; extern CoolGlobals* g_cool_globals; #endif enum class ShouldUnblockProcess { No = 0, Yes }; struct SignalActionData { LinearAddress handler_or_sigaction; dword mask { 0 }; int flags { 0 }; LinearAddress restorer; }; struct DisplayInfo { unsigned width; unsigned height; unsigned bpp; unsigned pitch; }; class Process : public InlineLinkedListNode, public Weakable { friend class InlineLinkedListNode; public: static Process* create_kernel_process(String&& name, void (*entry)()); static Process* create_user_process(const String& path, uid_t, gid_t, pid_t ppid, int& error, Vector&& arguments = Vector(), Vector&& environment = Vector(), TTY* = nullptr); ~Process(); static Vector all_pids(); static Vector all_processes(); static void finalize_dying_processes(); enum State { Invalid = 0, Runnable, Running, Skip1SchedulerPass, Skip0SchedulerPasses, Dying, Dead, BeingInspected, BlockedLurking, BlockedSleep, BlockedWait, BlockedRead, BlockedWrite, BlockedSignal, BlockedSelect, BlockedConnect, }; enum Priority { LowPriority, NormalPriority, HighPriority, }; enum RingLevel { Ring0 = 0, Ring3 = 3, }; bool is_ring0() const { return m_ring == Ring0; } bool is_ring3() const { return m_ring == Ring3; } bool is_blocked() const { return m_state == BlockedSleep || m_state == BlockedWait || m_state == BlockedRead || m_state == BlockedWrite || m_state == BlockedSignal || m_state == BlockedSelect; } PageDirectory& page_directory() { return *m_page_directory; } const PageDirectory& page_directory() const { return *m_page_directory; } bool in_kernel() const { return (m_tss.cs & 0x03) == 0; } static Process* from_pid(pid_t); void set_priority(Priority p) { m_priority = p; } Priority priority() const { return m_priority; } const String& name() const { return m_name; } pid_t pid() const { return m_pid; } pid_t sid() const { return m_sid; } pid_t pgid() const { return m_pgid; } dword ticks() const { return m_ticks; } word selector() const { return m_far_ptr.selector; } TSS32& tss() { return m_tss; } State state() const { return m_state; } uid_t uid() const { return m_uid; } gid_t gid() const { return m_gid; } uid_t euid() const { return m_euid; } gid_t egid() const { return m_egid; } pid_t ppid() const { return m_ppid; } const FarPtr& far_ptr() const { return m_far_ptr; } FileDescriptor* file_descriptor(int fd); const FileDescriptor* file_descriptor(int fd) const; void block(Process::State); void unblock(); void set_wakeup_time(dword t) { m_wakeup_time = t; } dword wakeup_time() const { return m_wakeup_time; } template static void for_each(Callback); template static void for_each_in_pgrp(pid_t, Callback); template static void for_each_in_state(State, Callback); template static void for_each_living(Callback); template void for_each_child(Callback); bool tick(); void set_ticks_left(dword t) { m_ticks_left = t; } dword ticks_left() const { return m_ticks_left; } void set_selector(word s) { m_far_ptr.selector = s; } void set_state(State s) { m_state = s; } void die(); void finalize(); pid_t sys$setsid(); pid_t sys$getsid(pid_t); int sys$setpgid(pid_t pid, pid_t pgid); pid_t sys$getpgrp(); pid_t sys$getpgid(pid_t); uid_t sys$getuid(); gid_t sys$getgid(); uid_t sys$geteuid(); gid_t sys$getegid(); pid_t sys$getpid(); pid_t sys$getppid(); mode_t sys$umask(mode_t); int sys$open(const char* path, int options, mode_t mode = 0); int sys$close(int fd); ssize_t sys$read(int fd, void* outbuf, size_t nread); ssize_t sys$write(int fd, const void*, size_t); int sys$fstat(int fd, stat*); int sys$lstat(const char*, stat*); int sys$stat(const char*, stat*); int sys$lseek(int fd, off_t, int whence); int sys$kill(pid_t pid, int sig); int sys$geterror() { return m_error; } [[noreturn]] void sys$exit(int status); [[noreturn]] void sys$sigreturn(); pid_t sys$waitpid(pid_t, int* wstatus, int options); void* sys$mmap(const Syscall::SC_mmap_params*); int sys$munmap(void*, size_t size); int sys$set_mmap_name(void*, size_t, const char*); int sys$select(const Syscall::SC_select_params*); int sys$poll(pollfd*, int nfds, int timeout); ssize_t sys$get_dir_entries(int fd, void*, size_t); int sys$getcwd(char*, size_t); int sys$chdir(const char*); int sys$sleep(unsigned seconds); int sys$usleep(useconds_t usec); int sys$gettimeofday(timeval*); int sys$gethostname(char* name, size_t length); int sys$get_arguments(int* argc, char*** argv); int sys$get_environment(char*** environ); int sys$uname(utsname*); int sys$readlink(const char*, char*, size_t); int sys$ttyname_r(int fd, char*, size_t); int sys$ptsname_r(int fd, char*, size_t); pid_t sys$fork(RegisterDump&); int sys$execve(const char* filename, const char** argv, const char** envp); int sys$isatty(int fd); int sys$getdtablesize(); int sys$dup(int oldfd); int sys$dup2(int oldfd, int newfd); int sys$sigaction(int signum, const sigaction* act, sigaction* old_act); int sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set); int sys$sigpending(sigset_t*); int sys$getgroups(int size, gid_t*); int sys$setgroups(size_t, const gid_t*); int sys$pipe(int* pipefd); int sys$killpg(int pgrp, int sig); int sys$setgid(gid_t); int sys$setuid(uid_t); unsigned sys$alarm(unsigned seconds); int sys$access(const char* pathname, int mode); int sys$fcntl(int fd, int cmd, dword extra_arg); int sys$ioctl(int fd, unsigned request, unsigned arg); int sys$mkdir(const char* pathname, mode_t mode); clock_t sys$times(tms*); int sys$utime(const char* pathname, const struct utimbuf*); int sys$link(const char* old_path, const char* new_path); int sys$unlink(const char* pathname); int sys$rmdir(const char* pathname); int sys$read_tsc(dword* lsw, dword* msw); int sys$chmod(const char* pathname, mode_t); int sys$socket(int domain, int type, int protocol); int sys$bind(int sockfd, const sockaddr* addr, socklen_t); int sys$listen(int sockfd, int backlog); int sys$accept(int sockfd, sockaddr*, socklen_t*); int sys$connect(int sockfd, const sockaddr*, socklen_t); int sys$create_shared_buffer(pid_t peer_pid, size_t, void** buffer); void* sys$get_shared_buffer(int shared_buffer_id); int sys$release_shared_buffer(int shared_buffer_id); bool wait_for_connect(Socket&, int& error); static void initialize(); [[noreturn]] void crash(); [[nodiscard]] static int reap(Process&); const TTY* tty() const { return m_tty; } void set_tty(TTY* tty) { m_tty = tty; } size_t region_count() const { return m_regions.size(); } const Vector>& regions() const { return m_regions; } void dump_regions(); void did_schedule() { ++m_times_scheduled; } dword times_scheduled() const { return m_times_scheduled; } dword m_ticks_in_user { 0 }; dword m_ticks_in_kernel { 0 }; dword m_ticks_in_user_for_dead_children { 0 }; dword m_ticks_in_kernel_for_dead_children { 0 }; pid_t waitee_pid() const { return m_waitee_pid; } dword frame_ptr() const { return m_tss.ebp; } dword stack_ptr() const { return m_tss.esp; } dword stack_top() const { return m_tss.ss == 0x10 ? m_stack_top0 : m_stack_top3; } bool validate_read_from_kernel(LinearAddress) const; bool validate_read(const void*, size_t) const; bool validate_write(void*, size_t) const; bool validate_read_str(const char* str); template bool validate_read_typed(T* value, size_t count = 1) { return validate_read(value, sizeof(T) * count); } template bool validate_write_typed(T* value, size_t count = 1) { return validate_write(value, sizeof(T) * count); } Inode* cwd_inode(); Inode* executable_inode() { return m_executable.ptr(); } size_t number_of_open_file_descriptors() const; size_t max_open_file_descriptors() const { return m_max_open_file_descriptors; } void send_signal(byte signal, Process* sender); ShouldUnblockProcess dispatch_one_pending_signal(); ShouldUnblockProcess dispatch_signal(byte signal); bool has_unmasked_pending_signals() const; void terminate_due_to_signal(byte signal); size_t amount_virtual() const; size_t amount_resident() const; size_t amount_shared() const; Process* fork(RegisterDump&); int exec(String path, Vector arguments, Vector environment); bool is_root() const { return m_euid == 0; } bool wakeup_requested() { return m_wakeup_requested; } void request_wakeup() { m_wakeup_requested = true; } FPUState& fpu_state() { return m_fpu_state; } bool has_used_fpu() const { return m_has_used_fpu; } void set_has_used_fpu(bool b) { m_has_used_fpu = b; } Region* allocate_region_with_vmo(LinearAddress, size_t, RetainPtr&&, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable); Region* allocate_file_backed_region(LinearAddress, size_t, RetainPtr&&, String&& name, bool is_readable, bool is_writable); Region* allocate_region(LinearAddress, size_t, String&& name, bool is_readable = true, bool is_writable = true, bool commit = true); bool deallocate_region(Region& region); private: friend class MemoryManager; friend class Scheduler; friend class Region; Process(String&& name, uid_t, gid_t, pid_t ppid, RingLevel, RetainPtr&& cwd = nullptr, RetainPtr&& executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr); int do_exec(String path, Vector arguments, Vector environment); void push_value_on_stack(dword); int alloc_fd(); void set_default_signal_dispositions(); void disown_all_shared_buffers(); RetainPtr m_page_directory; Process* m_prev { nullptr }; Process* m_next { nullptr }; String m_name; void (*m_entry)() { nullptr }; pid_t m_pid { 0 }; uid_t m_uid { 0 }; gid_t m_gid { 0 }; uid_t m_euid { 0 }; gid_t m_egid { 0 }; pid_t m_sid { 0 }; pid_t m_pgid { 0 }; dword m_ticks { 0 }; dword m_ticks_left { 0 }; dword m_stack_top0 { 0 }; dword m_stack_top3 { 0 }; FarPtr m_far_ptr; State m_state { Invalid }; Priority m_priority { NormalPriority }; dword m_wakeup_time { 0 }; TSS32 m_tss; TSS32 m_tss_to_resume_kernel; FPUState m_fpu_state; struct FileDescriptorAndFlags { operator bool() const { return !!descriptor; } void clear() { descriptor = nullptr; flags = 0; } void set(RetainPtr&& d, dword f = 0) { descriptor = move(d); flags = f; } RetainPtr descriptor; dword flags { 0 }; }; Vector m_fds; RingLevel m_ring { Ring0 }; int m_error { 0 }; void* m_kernel_stack { nullptr }; dword m_times_scheduled { 0 }; pid_t m_waitee_pid { -1 }; int m_blocked_fd { -1 }; Vector m_select_read_fds; Vector m_select_write_fds; timeval m_select_timeout; bool m_select_has_timeout { false }; size_t m_max_open_file_descriptors { 16 }; SignalActionData m_signal_action_data[32]; dword m_pending_signals { 0 }; dword m_signal_mask { 0xffffffff }; RetainPtr m_blocked_connecting_socket; byte m_termination_status { 0 }; byte m_termination_signal { 0 }; RetainPtr m_cwd; RetainPtr m_executable; TTY* m_tty { nullptr }; Region* region_from_range(LinearAddress, size_t); Vector> m_regions; // FIXME: Implement some kind of ASLR? LinearAddress m_next_region; LinearAddress m_return_to_ring3_from_signal_trampoline; LinearAddress m_return_to_ring0_from_signal_trampoline; pid_t m_ppid { 0 }; mode_t m_umask { 022 }; bool m_was_interrupted_while_blocked { false }; static void notify_waiters(pid_t waitee, int exit_status, int signal); Vector m_initial_arguments; Vector m_initial_environment; HashTable m_gids; Region* m_stack_region { nullptr }; Region* m_signal_stack_user_region { nullptr }; Region* m_signal_stack_kernel_region { nullptr }; RetainPtr m_display_framebuffer_region; dword m_wakeup_requested { false }; bool m_has_used_fpu { false }; }; extern Process* current; class ProcessInspectionHandle { public: ProcessInspectionHandle(Process& process) : m_process(process) , m_original_state(process.state()) { if (&process != current) m_process.set_state(Process::BeingInspected); } ~ProcessInspectionHandle() { m_process.set_state(m_original_state); } Process& process() { return m_process; } static OwnPtr from_pid(pid_t pid) { InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (process) return make(*process); return nullptr; } Process* operator->() { return &m_process; } Process& operator*() { return m_process; } private: Process& m_process; Process::State m_original_state { Process::Invalid }; }; static inline const char* to_string(Process::State state) { switch (state) { case Process::Invalid: return "Invalid"; case Process::Runnable: return "Runnable"; case Process::Running: return "Running"; case Process::Dying: return "Dying"; case Process::Dead: return "Dead"; case Process::Skip1SchedulerPass: return "Skip1"; case Process::Skip0SchedulerPasses: return "Skip0"; case Process::BlockedSleep: return "Sleep"; case Process::BlockedWait: return "Wait"; case Process::BlockedRead: return "Read"; case Process::BlockedWrite: return "Write"; case Process::BlockedSignal: return "Signal"; case Process::BlockedSelect: return "Select"; case Process::BlockedLurking: return "Lurking"; case Process::BlockedConnect: return "Connect"; case Process::BeingInspected: return "Inspect"; } ASSERT_NOT_REACHED(); return nullptr; } static inline const char* to_string(Process::Priority state) { switch (state) { case Process::LowPriority: return "Low"; case Process::NormalPriority: return "Normal"; case Process::HighPriority: return "High"; } ASSERT_NOT_REACHED(); return nullptr; } extern void block(Process::State); extern void sleep(dword ticks); extern InlineLinkedList* g_processes; template inline void Process::for_each(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (!callback(*process)) break; process = next_process; } } template inline void Process::for_each_child(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); pid_t my_pid = pid(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->ppid() == my_pid) { if (!callback(*process)) break; } process = next_process; } } template inline void Process::for_each_in_pgrp(pid_t pgid, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->pgid() == pgid) { if (!callback(*process)) break; } process = next_process; } } template inline void Process::for_each_in_state(State state, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->state() == state) callback(*process); process = next_process; } } template inline void Process::for_each_living(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->state() != Process::Dead && process->state() != Process::Dying) callback(*process); process = next_process; } }