/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #include #include // NOTE: We can't include during the toolchain bootstrap, // since it's part of libstdc++, and libstdc++ depends on LibC. // For this reason, we don't support Vector(initializer_list) in LibC. #ifndef SERENITY_LIBC_BUILD # include #endif #ifndef __serenity__ # include #endif namespace AK { template class TypedTransfer { public: static void move(T* destination, T* source, size_t count) { if (!count) return; if constexpr (Traits::is_trivial()) { __builtin_memmove(destination, source, count * sizeof(T)); return; } for (size_t i = 0; i < count; ++i) new (&destination[i]) T(AK::move(source[i])); } static void copy(T* destination, const T* source, size_t count) { if (!count) return; if constexpr (Traits::is_trivial()) { __builtin_memmove(destination, source, count * sizeof(T)); return; } for (size_t i = 0; i < count; ++i) new (&destination[i]) T(source[i]); } static bool compare(const T* a, const T* b, size_t count) { if (!count) return true; if constexpr (Traits::is_trivial()) return !__builtin_memcmp(a, b, count * sizeof(T)); for (size_t i = 0; i < count; ++i) { if (a[i] != b[i]) return false; } return true; } }; template class Vector { public: Vector() : m_capacity(inline_capacity) { } ~Vector() { clear(); } #ifndef SERENITY_LIBC_BUILD Vector(std::initializer_list list) { ensure_capacity(list.size()); for (auto& item : list) unchecked_append(item); } #endif Vector(Vector&& other) : m_size(other.m_size) , m_capacity(other.m_capacity) , m_outline_buffer(other.m_outline_buffer) { if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) T(move(other.inline_buffer()[i])); other.inline_buffer()[i].~T(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } Vector(const Vector& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } template Vector(const Vector& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } Span span() { return { data(), size() }; } Span span() const { return { data(), size() }; } // FIXME: What about assigning from a vector with lower inline capacity? Vector& operator=(Vector&& other) { if (this != &other) { clear(); m_size = other.m_size; m_capacity = other.m_capacity; m_outline_buffer = other.m_outline_buffer; if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) T(move(other.inline_buffer()[i])); other.inline_buffer()[i].~T(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } return *this; } void clear() { clear_with_capacity(); if (m_outline_buffer) { kfree(m_outline_buffer); m_outline_buffer = nullptr; } reset_capacity(); } void clear_with_capacity() { for (size_t i = 0; i < m_size; ++i) data()[i].~T(); m_size = 0; } bool operator==(const Vector& other) const { if (m_size != other.m_size) return false; return TypedTransfer::compare(data(), other.data(), size()); } bool operator!=(const Vector& other) const { return !(*this == other); } operator Span() { return span(); } operator Span() const { return span(); } bool contains_slow(const T& value) const { for (size_t i = 0; i < size(); ++i) { if (Traits::equals(at(i), value)) return true; } return false; } // NOTE: Vector::is_null() exists for the benefit of String::copy(). bool is_null() const { return false; } bool is_empty() const { return size() == 0; } ALWAYS_INLINE size_t size() const { return m_size; } size_t capacity() const { return m_capacity; } T* data() { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } const T* data() const { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } ALWAYS_INLINE const T& at(size_t i) const { ASSERT(i < m_size); return data()[i]; } ALWAYS_INLINE T& at(size_t i) { ASSERT(i < m_size); return data()[i]; } ALWAYS_INLINE const T& operator[](size_t i) const { return at(i); } ALWAYS_INLINE T& operator[](size_t i) { return at(i); } const T& first() const { return at(0); } T& first() { return at(0); } const T& last() const { return at(size() - 1); } T& last() { return at(size() - 1); } T take_last() { ASSERT(!is_empty()); T value = move(last()); last().~T(); --m_size; return value; } T take_first() { ASSERT(!is_empty()); T value = move(first()); remove(0); return value; } T take(size_t index) { T value = move(at(index)); remove(index); return value; } T unstable_take(size_t index) { ASSERT(index < m_size); swap(at(index), at(m_size - 1)); return take_last(); } void remove(size_t index) { ASSERT(index < m_size); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(slot(index), slot(index + 1), m_size - index - 1); } else { at(index).~T(); for (size_t i = index + 1; i < m_size; ++i) { new (slot(i - 1)) T(move(at(i))); at(i).~T(); } } --m_size; } void insert(size_t index, T&& value) { ASSERT(index <= size()); if (index == size()) return append(move(value)); grow_capacity(size() + 1); ++m_size; if constexpr (Traits::is_trivial()) { TypedTransfer::move(slot(index + 1), slot(index), m_size - index - 1); } else { for (size_t i = size() - 1; i > index; --i) { new (slot(i)) T(move(at(i - 1))); at(i - 1).~T(); } } new (slot(index)) T(move(value)); } void insert(size_t index, const T& value) { insert(index, T(value)); } template void insert_before_matching(T&& value, C callback, size_t first_index = 0, size_t* inserted_index = nullptr) { for (size_t i = first_index; i < size(); ++i) { if (callback(at(i))) { insert(i, move(value)); if (inserted_index) *inserted_index = i; return; } } append(move(value)); if (inserted_index) *inserted_index = size() - 1; } Vector& operator=(const Vector& other) { if (this != &other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } return *this; } template Vector& operator=(const Vector& other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); return *this; } void append(Vector&& other) { if (is_empty()) { *this = move(other); return; } auto other_size = other.size(); Vector tmp = move(other); grow_capacity(size() + other_size); TypedTransfer::move(data() + m_size, tmp.data(), other_size); m_size += other_size; } void append(const Vector& other) { grow_capacity(size() + other.size()); TypedTransfer::copy(data() + m_size, other.data(), other.size()); m_size += other.m_size; } template void remove_first_matching(Callback callback) { for (size_t i = 0; i < size(); ++i) { if (callback(at(i))) { remove(i); return; } } } template void remove_all_matching(Callback callback) { for (size_t i = 0; i < size();) { if (callback(at(i))) { remove(i); } else { ++i; } } } ALWAYS_INLINE void unchecked_append(T&& value) { ASSERT((size() + 1) <= capacity()); new (slot(m_size)) T(move(value)); ++m_size; } ALWAYS_INLINE void unchecked_append(const T& value) { unchecked_append(T(value)); } template void empend(Args&&... args) { grow_capacity(m_size + 1); new (slot(m_size)) T(forward(args)...); ++m_size; } ALWAYS_INLINE void append(T&& value) { grow_capacity(size() + 1); new (slot(m_size)) T(move(value)); ++m_size; } ALWAYS_INLINE void append(const T& value) { append(T(value)); } void prepend(T&& value) { insert(0, move(value)); } void prepend(const T& value) { insert(0, value); } void prepend(Vector&& other) { if (other.is_empty()) return; if (is_empty()) { *this = move(other); return; } auto other_size = other.size(); grow_capacity(size() + other_size); for (size_t i = size() + other_size - 1; i >= other.size(); --i) { new (slot(i)) T(move(at(i - other_size))); at(i - other_size).~T(); } Vector tmp = move(other); TypedTransfer::move(slot(0), tmp.data(), tmp.size()); m_size += other_size; } void append(const T* values, size_t count) { if (!count) return; grow_capacity(size() + count); TypedTransfer::copy(slot(m_size), values, count); m_size += count; } void grow_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return; ensure_capacity(padded_capacity(needed_capacity)); } void ensure_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return; size_t new_capacity = needed_capacity; auto* new_buffer = (T*)kmalloc(new_capacity * sizeof(T)); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(new_buffer, data(), m_size); } else { for (size_t i = 0; i < m_size; ++i) { new (&new_buffer[i]) T(move(at(i))); at(i).~T(); } } if (m_outline_buffer) kfree(m_outline_buffer); m_outline_buffer = new_buffer; m_capacity = new_capacity; } void shrink(size_t new_size, bool keep_capacity = false) { ASSERT(new_size <= size()); if (new_size == size()) return; if (!new_size) { if (keep_capacity) clear_with_capacity(); else clear(); return; } for (size_t i = new_size; i < size(); ++i) at(i).~T(); m_size = new_size; } void resize(size_t new_size, bool keep_capacity = false) { if (new_size <= size()) return shrink(new_size, keep_capacity); ensure_capacity(new_size); for (size_t i = size(); i < new_size; ++i) new (slot(i)) T; m_size = new_size; } void resize_and_keep_capacity(size_t new_size) { return resize(new_size, true); } using ConstIterator = SimpleIterator; using Iterator = SimpleIterator; ConstIterator begin() const { return ConstIterator::begin(*this); } Iterator begin() { return Iterator::begin(*this); } ConstIterator end() const { return ConstIterator::end(*this); } Iterator end() { return Iterator::end(*this); } template ConstIterator find(Finder finder) const { for (size_t i = 0; i < m_size; ++i) { if (finder(at(i))) return ConstIterator(*this, i); } return end(); } template Iterator find(Finder finder) { for (size_t i = 0; i < m_size; ++i) { if (finder(at(i))) return Iterator { *this, i }; } return end(); } ConstIterator find(const T& value) const { return find([&](auto& other) { return Traits::equals(value, other); }); } Iterator find(const T& value) { return find([&](auto& other) { return Traits::equals(value, other); }); } Optional find_first_index(const T& value) { for (size_t i = 0; i < m_size; ++i) { if (Traits::equals(value, at(i))) return i; } return {}; } private: void reset_capacity() { m_capacity = inline_capacity; } static size_t padded_capacity(size_t capacity) { return max(static_cast(4), capacity + (capacity / 4) + 4); } T* slot(size_t i) { return &data()[i]; } const T* slot(size_t i) const { return &data()[i]; } T* inline_buffer() { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } const T* inline_buffer() const { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } size_t m_size { 0 }; size_t m_capacity { 0 }; alignas(T) unsigned char m_inline_buffer_storage[sizeof(T) * inline_capacity]; T* m_outline_buffer { nullptr }; }; } using AK::Vector;