/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include namespace AK { enum class HashSetResult { InsertedNewEntry, ReplacedExistingEntry }; template class HashTableIterator { friend HashTableType; public: bool operator==(const HashTableIterator& other) const { return m_bucket == other.m_bucket; } bool operator!=(const HashTableIterator& other) const { return m_bucket != other.m_bucket; } T& operator*() { return *m_bucket->slot(); } T* operator->() { return m_bucket->slot(); } void operator++() { skip_to_next(); } private: void skip_to_next() { if (!m_bucket) return; do { ++m_bucket; if (m_bucket->used) return; } while (!m_bucket->end); if (m_bucket->end) m_bucket = nullptr; } explicit HashTableIterator(BucketType* bucket) : m_bucket(bucket) { } BucketType* m_bucket { nullptr }; }; template class HashTable { static constexpr size_t load_factor_in_percent = 60; struct Bucket { bool used; bool deleted; bool end; alignas(T) u8 storage[sizeof(T)]; T* slot() { return reinterpret_cast(storage); } const T* slot() const { return reinterpret_cast(storage); } }; public: HashTable() = default; explicit HashTable(size_t capacity) { rehash(capacity); } ~HashTable() { if (!m_buckets) return; for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) m_buckets[i].slot()->~T(); } kfree(m_buckets); } HashTable(const HashTable& other) { rehash(other.capacity()); for (auto& it : other) set(it); } HashTable& operator=(const HashTable& other) { HashTable temporary(other); swap(*this, temporary); return *this; } HashTable(HashTable&& other) noexcept : m_buckets(other.m_buckets) , m_size(other.m_size) , m_capacity(other.m_capacity) , m_deleted_count(other.m_deleted_count) { other.m_size = 0; other.m_capacity = 0; other.m_deleted_count = 0; other.m_buckets = nullptr; } HashTable& operator=(HashTable&& other) noexcept { swap(*this, other); return *this; } friend void swap(HashTable& a, HashTable& b) noexcept { swap(a.m_buckets, b.m_buckets); swap(a.m_size, b.m_size); swap(a.m_capacity, b.m_capacity); swap(a.m_deleted_count, b.m_deleted_count); } bool is_empty() const { return !m_size; } size_t size() const { return m_size; } size_t capacity() const { return m_capacity; } template void set_from(U (&from_array)[N]) { for (size_t i = 0; i < N; ++i) { set(from_array[i]); } } void ensure_capacity(size_t capacity) { VERIFY(capacity >= size()); rehash(capacity * 2); } bool contains(const T& value) const { return find(value) != end(); } using Iterator = HashTableIterator; Iterator begin() { for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) return Iterator(&m_buckets[i]); } return end(); } Iterator end() { return Iterator(nullptr); } using ConstIterator = HashTableIterator; ConstIterator begin() const { for (size_t i = 0; i < m_capacity; ++i) { if (m_buckets[i].used) return ConstIterator(&m_buckets[i]); } return end(); } ConstIterator end() const { return ConstIterator(nullptr); } void clear() { *this = HashTable(); } template HashSetResult set(U&& value) { auto& bucket = lookup_for_writing(value); if (bucket.used) { (*bucket.slot()) = forward(value); return HashSetResult::ReplacedExistingEntry; } new (bucket.slot()) T(forward(value)); bucket.used = true; if (bucket.deleted) { bucket.deleted = false; --m_deleted_count; } ++m_size; return HashSetResult::InsertedNewEntry; } template Iterator find(unsigned hash, Finder finder) { return Iterator(lookup_with_hash(hash, move(finder))); } Iterator find(const T& value) { return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); }); } template ConstIterator find(unsigned hash, Finder finder) const { return ConstIterator(lookup_with_hash(hash, move(finder))); } ConstIterator find(const T& value) const { return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); }); } bool remove(const T& value) { auto it = find(value); if (it != end()) { remove(it); return true; } return false; } void remove(Iterator iterator) { VERIFY(iterator.m_bucket); auto& bucket = *iterator.m_bucket; VERIFY(bucket.used); VERIFY(!bucket.end); VERIFY(!bucket.deleted); bucket.slot()->~T(); bucket.used = false; bucket.deleted = true; --m_size; ++m_deleted_count; } private: void insert_during_rehash(T&& value) { auto& bucket = lookup_for_writing(value); new (bucket.slot()) T(move(value)); bucket.used = true; } void rehash(size_t new_capacity) { new_capacity = max(new_capacity, static_cast(4)); auto* old_buckets = m_buckets; auto old_capacity = m_capacity; m_buckets = (Bucket*)kmalloc(sizeof(Bucket) * (new_capacity + 1)); __builtin_memset(m_buckets, 0, sizeof(Bucket) * (new_capacity + 1)); m_capacity = new_capacity; m_deleted_count = 0; m_buckets[m_capacity].end = true; if (!old_buckets) return; for (size_t i = 0; i < old_capacity; ++i) { auto& old_bucket = old_buckets[i]; if (old_bucket.used) { insert_during_rehash(move(*old_bucket.slot())); old_bucket.slot()->~T(); } } kfree(old_buckets); } template Bucket* lookup_with_hash(unsigned hash, Finder finder) const { if (is_empty()) return nullptr; for (;;) { auto& bucket = m_buckets[hash % m_capacity]; if (bucket.used && finder(*bucket.slot())) return &bucket; if (!bucket.used && !bucket.deleted) return nullptr; hash = double_hash(hash); } } const Bucket* lookup_for_reading(const T& value) const { return lookup_with_hash(TraitsForT::hash(value), [&value](auto& entry) { return TraitsForT::equals(entry, value); }); } Bucket& lookup_for_writing(const T& value) { if (should_grow()) rehash(capacity() * 2); auto hash = TraitsForT::hash(value); Bucket* first_empty_bucket = nullptr; for (;;) { auto& bucket = m_buckets[hash % m_capacity]; if (bucket.used && TraitsForT::equals(*bucket.slot(), value)) return bucket; if (!bucket.used) { if (!first_empty_bucket) first_empty_bucket = &bucket; if (!bucket.deleted) return *const_cast(first_empty_bucket); } hash = double_hash(hash); } } size_t used_bucket_count() const { return m_size + m_deleted_count; } bool should_grow() const { return ((used_bucket_count() + 1) * 100) >= (m_capacity * load_factor_in_percent); } Bucket* m_buckets { nullptr }; size_t m_size { 0 }; size_t m_capacity { 0 }; size_t m_deleted_count { 0 }; }; } using AK::HashTable;