/* * Copyright (c) 2020, Itamar S. * Copyright (c) 2020-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace Kernel { static ErrorOr handle_ptrace(Kernel::Syscall::SC_ptrace_params const& params, Process& caller) { SpinlockLocker scheduler_lock(g_scheduler_lock); if (params.request == PT_TRACE_ME) { if (Process::current().tracer()) return EBUSY; caller.set_wait_for_tracer_at_next_execve(true); return 0; } // FIXME: PID/TID BUG // This bug allows to request PT_ATTACH (or anything else) the same process, as // long it is not the main thread. Alternatively, if this is desired, then the // bug is that this prevents PT_ATTACH to the main thread from another thread. if (params.tid == caller.pid().value()) return EINVAL; auto peer = Thread::from_tid_in_same_jail(params.tid); if (!peer) return ESRCH; MutexLocker ptrace_locker(peer->process().ptrace_lock()); auto peer_credentials = peer->process().credentials(); auto caller_credentials = caller.credentials(); if ((peer_credentials->uid() != caller_credentials->euid()) || (peer_credentials->uid() != peer_credentials->euid())) // Disallow tracing setuid processes return EACCES; if (!peer->process().is_dumpable()) return EACCES; auto& peer_process = peer->process(); if (params.request == PT_ATTACH) { if (peer_process.tracer()) { return EBUSY; } TRY(peer_process.start_tracing_from(caller.pid())); SpinlockLocker lock(peer->get_lock()); if (peer->state() == Thread::State::Stopped) { peer_process.tracer()->set_regs(peer->get_register_dump_from_stack()); } else { peer->send_signal(SIGSTOP, &caller); } return 0; } auto* tracer = peer_process.tracer(); if (!tracer) return EPERM; if (tracer->tracer_pid() != caller.pid()) return EBUSY; if (peer->state() == Thread::State::Running) return EBUSY; scheduler_lock.unlock(); switch (params.request) { case PT_CONTINUE: peer->send_signal(SIGCONT, &caller); break; case PT_DETACH: peer_process.stop_tracing(); peer->send_signal(SIGCONT, &caller); break; case PT_SYSCALL: tracer->set_trace_syscalls(true); peer->send_signal(SIGCONT, &caller); break; case PT_GETREGS: { if (!tracer->has_regs()) return EINVAL; auto* regs = reinterpret_cast(params.addr); TRY(copy_to_user(regs, &tracer->regs())); break; } case PT_SETREGS: { if (!tracer->has_regs()) return EINVAL; PtraceRegisters regs {}; TRY(copy_from_user(®s, (PtraceRegisters const*)params.addr)); auto& peer_saved_registers = peer->get_register_dump_from_stack(); // Verify that the saved registers are in usermode context if (peer_saved_registers.previous_mode() != ExecutionMode::User) return EFAULT; tracer->set_regs(regs); copy_ptrace_registers_into_kernel_registers(peer_saved_registers, regs); break; } case PT_PEEK: { auto data = TRY(peer->process().peek_user_data(Userspace { (FlatPtr)params.addr })); TRY(copy_to_user((FlatPtr*)params.data, &data)); break; } case PT_POKE: TRY(peer->process().poke_user_data(Userspace { (FlatPtr)params.addr }, params.data)); return 0; case PT_PEEKBUF: { Kernel::Syscall::SC_ptrace_buf_params buf_params {}; TRY(copy_from_user(&buf_params, reinterpret_cast(params.data))); // This is a comparatively large allocation on the Kernel stack. // However, we know that we're close to the root of the call stack, and the following calls shouldn't go too deep. Array buf; FlatPtr tracee_ptr = (FlatPtr)params.addr; while (buf_params.buf.size > 0) { size_t copy_this_iteration = min(buf.size(), buf_params.buf.size); TRY(peer->process().peek_user_data(buf.span().slice(0, copy_this_iteration), Userspace { tracee_ptr })); TRY(copy_to_user((void*)buf_params.buf.data, buf.data(), copy_this_iteration)); tracee_ptr += copy_this_iteration; buf_params.buf.data += copy_this_iteration; buf_params.buf.size -= copy_this_iteration; } break; } case PT_PEEKDEBUG: { auto data = TRY(peer->peek_debug_register(reinterpret_cast(params.addr))); TRY(copy_to_user((FlatPtr*)params.data, &data)); break; } case PT_POKEDEBUG: TRY(peer->poke_debug_register(reinterpret_cast(params.addr), params.data)); return 0; default: return EINVAL; } return 0; } ErrorOr Process::sys$ptrace(Userspace user_params) { VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this); TRY(require_promise(Pledge::ptrace)); auto params = TRY(copy_typed_from_user(user_params)); return handle_ptrace(params, *this); } /** * "Does this process have a thread that is currently being traced by the provided process?" */ bool Process::has_tracee_thread(ProcessID tracer_pid) { if (auto const* tracer = this->tracer()) return tracer->tracer_pid() == tracer_pid; return false; } ErrorOr Process::peek_user_data(Userspace address) { // This function can be called from the context of another // process that called PT_PEEK ScopedAddressSpaceSwitcher switcher(*this); return TRY(copy_typed_from_user(address)); } ErrorOr Process::peek_user_data(Span destination, Userspace address) { // This function can be called from the context of another // process that called PT_PEEKBUF ScopedAddressSpaceSwitcher switcher(*this); TRY(copy_from_user(destination.data(), address, destination.size())); return {}; } ErrorOr Process::poke_user_data(Userspace address, FlatPtr data) { Memory::VirtualRange range = { address.vaddr(), sizeof(FlatPtr) }; return address_space().with([&](auto& space) -> ErrorOr { auto* region = space->find_region_containing(range); if (!region) return EFAULT; ScopedAddressSpaceSwitcher switcher(*this); if (region->is_shared()) { // If the region is shared, we change its vmobject to a PrivateInodeVMObject // to prevent the write operation from changing any shared inode data VERIFY(region->vmobject().is_shared_inode()); auto vmobject = TRY(Memory::PrivateInodeVMObject::try_create_with_inode(static_cast(region->vmobject()).inode())); region->set_vmobject(move(vmobject)); region->set_shared(false); } bool const was_writable = region->is_writable(); if (!was_writable) { region->set_writable(true); region->remap(); } ScopeGuard rollback([&]() { if (!was_writable) { region->set_writable(false); region->remap(); } }); return copy_to_user(address, &data); }); } ErrorOr Thread::peek_debug_register(u32 register_index) { #if ARCH(X86_64) FlatPtr data; switch (register_index) { case 0: data = m_debug_register_state.dr0; break; case 1: data = m_debug_register_state.dr1; break; case 2: data = m_debug_register_state.dr2; break; case 3: data = m_debug_register_state.dr3; break; case 6: data = m_debug_register_state.dr6; break; case 7: data = m_debug_register_state.dr7; break; default: return EINVAL; } return data; #elif ARCH(AARCH64) (void)register_index; TODO_AARCH64(); #else # error "Unknown architecture" #endif } ErrorOr Thread::poke_debug_register(u32 register_index, FlatPtr data) { #if ARCH(X86_64) switch (register_index) { case 0: m_debug_register_state.dr0 = data; break; case 1: m_debug_register_state.dr1 = data; break; case 2: m_debug_register_state.dr2 = data; break; case 3: m_debug_register_state.dr3 = data; break; case 7: m_debug_register_state.dr7 = data; break; default: return EINVAL; } return {}; #elif ARCH(AARCH64) (void)register_index; (void)data; TODO_AARCH64(); #else # error "Unknown architecture" #endif } }