/* * Copyright (c) 2020-2022, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include namespace Gfx { float AffineTransform::x_scale() const { return AK::hypot(m_values[0], m_values[1]); } float AffineTransform::y_scale() const { return AK::hypot(m_values[2], m_values[3]); } FloatPoint AffineTransform::scale() const { return { x_scale(), y_scale() }; } float AffineTransform::x_translation() const { return e(); } float AffineTransform::y_translation() const { return f(); } FloatPoint AffineTransform::translation() const { return { x_translation(), y_translation() }; } AffineTransform& AffineTransform::scale(float sx, float sy) { m_values[0] *= sx; m_values[1] *= sx; m_values[2] *= sy; m_values[3] *= sy; return *this; } AffineTransform& AffineTransform::scale(FloatPoint s) { return scale(s.x(), s.y()); } AffineTransform& AffineTransform::set_scale(float sx, float sy) { m_values[0] = sx; m_values[1] = 0; m_values[2] = 0; m_values[3] = sy; return *this; } AffineTransform& AffineTransform::set_scale(FloatPoint s) { return set_scale(s.x(), s.y()); } AffineTransform& AffineTransform::skew_radians(float x_radians, float y_radians) { AffineTransform skew_transform(1, AK::tan(y_radians), AK::tan(x_radians), 1, 0, 0); multiply(skew_transform); return *this; } AffineTransform& AffineTransform::translate(float tx, float ty) { if (is_identity_or_translation()) { m_values[4] += tx; m_values[5] += ty; return *this; } m_values[4] += tx * m_values[0] + ty * m_values[2]; m_values[5] += tx * m_values[1] + ty * m_values[3]; return *this; } AffineTransform& AffineTransform::translate(FloatPoint t) { return translate(t.x(), t.y()); } AffineTransform& AffineTransform::set_translation(float tx, float ty) { m_values[4] = tx; m_values[5] = ty; return *this; } AffineTransform& AffineTransform::set_translation(FloatPoint t) { return set_translation(t.x(), t.y()); } AffineTransform& AffineTransform::multiply(AffineTransform const& other) { if (other.is_identity()) return *this; AffineTransform result; result.m_values[0] = other.a() * a() + other.b() * c(); result.m_values[1] = other.a() * b() + other.b() * d(); result.m_values[2] = other.c() * a() + other.d() * c(); result.m_values[3] = other.c() * b() + other.d() * d(); result.m_values[4] = other.e() * a() + other.f() * c() + e(); result.m_values[5] = other.e() * b() + other.f() * d() + f(); *this = result; return *this; } AffineTransform& AffineTransform::rotate_radians(float radians) { float sin_angle; float cos_angle; AK::sincos(radians, sin_angle, cos_angle); AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0); multiply(rotation); return *this; } float AffineTransform::determinant() const { return a() * d() - b() * c(); } Optional AffineTransform::inverse() const { auto det = determinant(); if (det == 0) return {}; return AffineTransform { d() / det, -b() / det, -c() / det, a() / det, (c() * f() - d() * e()) / det, (b() * e() - a() * f()) / det, }; } void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const { mapped_x = a() * unmapped_x + c() * unmapped_y + e(); mapped_y = b() * unmapped_x + d() * unmapped_y + f(); } template<> IntPoint AffineTransform::map(IntPoint point) const { float mapped_x; float mapped_y; map(static_cast(point.x()), static_cast(point.y()), mapped_x, mapped_y); return { round_to(mapped_x), round_to(mapped_y) }; } template<> FloatPoint AffineTransform::map(FloatPoint point) const { float mapped_x; float mapped_y; map(point.x(), point.y(), mapped_x, mapped_y); return { mapped_x, mapped_y }; } template<> IntSize AffineTransform::map(IntSize size) const { return { round_to(static_cast(size.width()) * x_scale()), round_to(static_cast(size.height()) * y_scale()), }; } template<> FloatSize AffineTransform::map(FloatSize size) const { return { size.width() * x_scale(), size.height() * y_scale() }; } template static T smallest_of(T p1, T p2, T p3, T p4) { return min(min(p1, p2), min(p3, p4)); } template static T largest_of(T p1, T p2, T p3, T p4) { return max(max(p1, p2), max(p3, p4)); } template<> FloatRect AffineTransform::map(FloatRect const& rect) const { if (is_identity()) { return rect; } if (is_identity_or_translation()) { return rect.translated(e(), f()); } FloatPoint p1 = map(rect.top_left()); FloatPoint p2 = map(rect.top_right()); FloatPoint p3 = map(rect.bottom_right()); FloatPoint p4 = map(rect.bottom_left()); float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x()); float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y()); float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x()); float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y()); return { left, top, right - left, bottom - top }; } template<> IntRect AffineTransform::map(IntRect const& rect) const { return enclosing_int_rect(map(FloatRect(rect))); } Quad AffineTransform::map_to_quad(Rect const& rect) const { return { map(rect.top_left()), map(rect.top_right()), map(rect.bottom_right()), map(rect.bottom_left()), }; } float AffineTransform::rotation() const { auto rotation = AK::atan2(b(), a()); while (rotation < -AK::Pi) rotation += 2.0f * AK::Pi; while (rotation > AK::Pi) rotation -= 2.0f * AK::Pi; return rotation; } }