/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define EVENTLOOP_DEBUG //#define DEFERRED_INVOKE_DEBUG namespace Core { class RPCClient; struct EventLoopTimer { int timer_id { 0 }; int interval { 0 }; timeval fire_time { 0, 0 }; bool should_reload { false }; TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No }; WeakPtr owner; void reload(const timeval& now); bool has_expired(const timeval& now) const; }; struct EventLoop::Private { LibThread::Lock lock; }; static EventLoop* s_main_event_loop; static Vector* s_event_loop_stack; static NeverDestroyed s_id_allocator; static HashMap>* s_timers; static HashTable* s_notifiers; int EventLoop::s_wake_pipe_fds[2]; HashMap EventLoop::s_signal_handlers; int EventLoop::s_handling_signal = 0; int EventLoop::s_next_signal_id = 0; pid_t EventLoop::s_pid; static RefPtr s_rpc_server; HashMap> s_rpc_clients; class RPCClient : public Object { C_OBJECT(RPCClient) public: explicit RPCClient(RefPtr socket) : m_socket(move(socket)) , m_client_id(s_id_allocator->allocate()) { s_rpc_clients.set(m_client_id, this); add_child(*m_socket); m_socket->on_ready_to_read = [this] { u32 length; int nread = m_socket->read((u8*)&length, sizeof(length)); if (nread == 0) { #ifdef EVENTLOOP_DEBUG dbg() << "RPC client disconnected"; #endif shutdown(); return; } ASSERT(nread == sizeof(length)); auto request = m_socket->read(length); auto request_json = JsonValue::from_string(request); if (!request_json.has_value() || !request_json.value().is_object()) { dbg() << "RPC client sent invalid request"; shutdown(); return; } handle_request(request_json.value().as_object()); }; } virtual ~RPCClient() override { if (m_inspected_object) m_inspected_object->decrement_inspector_count({}); } void send_response(const JsonObject& response) { auto serialized = response.to_string(); u32 length = serialized.length(); m_socket->write((const u8*)&length, sizeof(length)); m_socket->write(serialized); } void handle_request(const JsonObject& request) { auto type = request.get("type").as_string_or({}); if (type.is_null()) { dbg() << "RPC client sent request without type field"; return; } if (type == "Identify") { JsonObject response; response.set("type", type); response.set("pid", getpid()); #ifdef __serenity__ char buffer[1024]; if (get_process_name(buffer, sizeof(buffer)) >= 0) { response.set("process_name", buffer); } else { response.set("process_name", JsonValue()); } #endif send_response(response); return; } if (type == "GetAllObjects") { JsonObject response; response.set("type", type); JsonArray objects; for (auto& object : Object::all_objects()) { JsonObject json_object; object.save_to(json_object); objects.append(move(json_object)); } response.set("objects", move(objects)); send_response(response); return; } if (type == "SetInspectedObject") { auto address = request.get("address").to_number(); for (auto& object : Object::all_objects()) { if ((FlatPtr)&object == address) { if (m_inspected_object) m_inspected_object->decrement_inspector_count({}); m_inspected_object = object.make_weak_ptr(); m_inspected_object->increment_inspector_count({}); break; } } return; } if (type == "SetProperty") { auto address = request.get("address").to_number(); for (auto& object : Object::all_objects()) { if ((FlatPtr)&object == address) { bool success = object.set_property(request.get("name").to_string(), request.get("value")); JsonObject response; response.set("type", "SetProperty"); response.set("success", success); send_response(response); break; } } return; } if (type == "Disconnect") { shutdown(); return; } } void shutdown() { s_rpc_clients.remove(m_client_id); s_id_allocator->deallocate(m_client_id); } private: RefPtr m_socket; WeakPtr m_inspected_object; int m_client_id { -1 }; }; EventLoop::EventLoop() : m_private(make()) { if (!s_event_loop_stack) { s_event_loop_stack = new Vector; s_timers = new HashMap>; s_notifiers = new HashTable; } if (!s_main_event_loop) { s_main_event_loop = this; s_pid = getpid(); #if defined(SOCK_NONBLOCK) int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC); #else int rc = pipe(s_wake_pipe_fds); fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC); fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC); #endif ASSERT(rc == 0); s_event_loop_stack->append(this); if (!s_rpc_server) { if (!start_rpc_server()) dbg() << "Core::EventLoop: Failed to start an RPC server"; } } #ifdef EVENTLOOP_DEBUG dbg() << getpid() << " Core::EventLoop constructed :)"; #endif } EventLoop::~EventLoop() { } bool EventLoop::start_rpc_server() { // Create /tmp/rpc if it doesn't exist. int rc = mkdir("/tmp/rpc", 0777); if (rc == 0) { // Ensure it gets created as 0777 despite our umask. rc = chmod("/tmp/rpc", 0777); if (rc < 0) { perror("chmod /tmp/rpc"); // Continue further. } } else if (errno != EEXIST) { perror("mkdir /tmp/rpc"); return false; } auto rpc_path = String::format("/tmp/rpc/%d", getpid()); rc = unlink(rpc_path.characters()); if (rc < 0 && errno != ENOENT) { perror("unlink"); return false; } s_rpc_server = LocalServer::construct(); s_rpc_server->set_name("Core::EventLoop_RPC_server"); s_rpc_server->on_ready_to_accept = [&] { RPCClient::construct(s_rpc_server->accept()); }; return s_rpc_server->listen(rpc_path); } EventLoop& EventLoop::main() { ASSERT(s_main_event_loop); return *s_main_event_loop; } EventLoop& EventLoop::current() { EventLoop* event_loop = s_event_loop_stack->last(); ASSERT(event_loop != nullptr); return *event_loop; } void EventLoop::quit(int code) { #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop::quit(" << code << ")"; #endif m_exit_requested = true; m_exit_code = code; } void EventLoop::unquit() { #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop::unquit()"; #endif m_exit_requested = false; m_exit_code = 0; } struct EventLoopPusher { public: EventLoopPusher(EventLoop& event_loop) : m_event_loop(event_loop) { if (&m_event_loop != s_main_event_loop) { m_event_loop.take_pending_events_from(EventLoop::current()); s_event_loop_stack->append(&event_loop); } } ~EventLoopPusher() { if (&m_event_loop != s_main_event_loop) { s_event_loop_stack->take_last(); EventLoop::current().take_pending_events_from(m_event_loop); } } private: EventLoop& m_event_loop; }; int EventLoop::exec() { EventLoopPusher pusher(*this); for (;;) { if (m_exit_requested) return m_exit_code; pump(); } ASSERT_NOT_REACHED(); } void EventLoop::pump(WaitMode mode) { wait_for_event(mode); decltype(m_queued_events) events; { LOCKER(m_private->lock); events = move(m_queued_events); } for (size_t i = 0; i < events.size(); ++i) { auto& queued_event = events.at(i); auto* receiver = queued_event.receiver.ptr(); auto& event = *queued_event.event; #ifdef EVENTLOOP_DEBUG if (receiver) dbg() << "Core::EventLoop: " << *receiver << " event " << (int)event.type(); #endif if (!receiver) { switch (event.type()) { case Event::Quit: ASSERT_NOT_REACHED(); return; default: #ifdef EVENTLOOP_DEBUG dbg() << "Event type " << event.type() << " with no receiver :("; #endif break; } } else if (event.type() == Event::Type::DeferredInvoke) { #ifdef DEFERRED_INVOKE_DEBUG dbg() << "DeferredInvoke: receiver = " << receiver->class_name() << "{" << receiver << "}"; #endif static_cast(event).m_invokee(*receiver); } else { NonnullRefPtr protector(*receiver); receiver->dispatch_event(event); } if (m_exit_requested) { LOCKER(m_private->lock); #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop: Exit requested. Rejigging " << (events.size() - i) << " events."; #endif decltype(m_queued_events) new_event_queue; new_event_queue.ensure_capacity(m_queued_events.size() + events.size()); for (++i; i < events.size(); ++i) new_event_queue.unchecked_append(move(events[i])); new_event_queue.append(move(m_queued_events)); m_queued_events = move(new_event_queue); return; } } } void EventLoop::post_event(Object& receiver, NonnullOwnPtr&& event) { LOCKER(m_private->lock); #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop::post_event: {" << m_queued_events.size() << "} << receiver=" << receiver << ", event=" << event; #endif m_queued_events.empend(receiver, move(event)); } EventLoop::SignalHandlers::SignalHandlers(int signo) : m_signo(signo) , m_original_handler(signal(signo, EventLoop::handle_signal)) { #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop: Registered handler for signal " << m_signo; #endif } EventLoop::SignalHandlers::~SignalHandlers() { if (m_valid) { #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop: Unregistering handler for signal " << m_signo; #endif signal(m_signo, m_original_handler); } } void EventLoop::SignalHandlers::dispatch() { for (auto& handler : m_handlers) handler.value(m_signo); } int EventLoop::SignalHandlers::add(Function&& handler) { int id = ++EventLoop::s_next_signal_id; // TODO: worry about wrapping and duplicates? m_handlers.set(id, move(handler)); return id; } bool EventLoop::SignalHandlers::remove(int handler_id) { ASSERT(handler_id != 0); return m_handlers.remove(handler_id); } void EventLoop::dispatch_signal(int signo) { // We need to protect the handler from being removed while handling it TemporaryChange change(s_handling_signal, signo); auto handlers = s_signal_handlers.find(signo); if (handlers != s_signal_handlers.end()) { #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop: dispatching signal " << signo; #endif handlers->value.dispatch(); } } void EventLoop::handle_signal(int signo) { ASSERT(signo != 0); // We MUST check if the current pid still matches, because there // is a window between fork() and exec() where a signal delivered // to our fork could be inadvertedly routed to the parent process! if (getpid() == s_pid) { int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo)); if (nwritten < 0) { perror("EventLoop::register_signal: write"); ASSERT_NOT_REACHED(); } } else { // We're a fork who received a signal, reset s_pid s_pid = 0; } } int EventLoop::register_signal(int signo, Function handler) { ASSERT(signo != 0); ASSERT(s_handling_signal != signo); // can't register the same signal while handling it auto handlers = s_signal_handlers.find(signo); if (handlers == s_signal_handlers.end()) { SignalHandlers signal_handlers(signo); auto handler_id = signal_handlers.add(move(handler)); s_signal_handlers.set(signo, move(signal_handlers)); return handler_id; } else { return handlers->value.add(move(handler)); } } void EventLoop::unregister_signal(int handler_id) { ASSERT(handler_id != 0); int remove_signo = 0; for (auto& h : s_signal_handlers) { auto& handlers = h.value; if (handlers.m_signo == s_handling_signal) { // can't remove the same signal while handling it ASSERT(!handlers.have(handler_id)); } else if (handlers.remove(handler_id)) { if (handlers.is_empty()) remove_signo = handlers.m_signo; break; } } if (remove_signo != 0) s_signal_handlers.remove(remove_signo); } void EventLoop::notify_forked(ForkEvent event) { switch (event) { case ForkEvent::Child: s_main_event_loop = nullptr; s_event_loop_stack->clear(); s_timers->clear(); s_notifiers->clear(); s_signal_handlers.clear(); s_handling_signal = 0; s_next_signal_id = 0; s_pid = 0; s_rpc_server = nullptr; s_rpc_clients.clear(); return; } ASSERT_NOT_REACHED(); } void EventLoop::wait_for_event(WaitMode mode) { fd_set rfds; fd_set wfds; retry: FD_ZERO(&rfds); FD_ZERO(&wfds); int max_fd = 0; auto add_fd_to_set = [&max_fd](int fd, fd_set& set) { FD_SET(fd, &set); if (fd > max_fd) max_fd = fd; }; int max_fd_added = -1; add_fd_to_set(s_wake_pipe_fds[0], rfds); max_fd = max(max_fd, max_fd_added); for (auto& notifier : *s_notifiers) { if (notifier->event_mask() & Notifier::Read) add_fd_to_set(notifier->fd(), rfds); if (notifier->event_mask() & Notifier::Write) add_fd_to_set(notifier->fd(), wfds); if (notifier->event_mask() & Notifier::Exceptional) ASSERT_NOT_REACHED(); } bool queued_events_is_empty; { LOCKER(m_private->lock); queued_events_is_empty = m_queued_events.is_empty(); } timeval now; struct timeval timeout = { 0, 0 }; bool should_wait_forever = false; if (mode == WaitMode::WaitForEvents && queued_events_is_empty) { auto next_timer_expiration = get_next_timer_expiration(); if (next_timer_expiration.has_value()) { timespec now_spec; clock_gettime(CLOCK_MONOTONIC, &now_spec); now.tv_sec = now_spec.tv_sec; now.tv_usec = now_spec.tv_nsec / 1000; timeval_sub(next_timer_expiration.value(), now, timeout); if (timeout.tv_sec < 0) { timeout.tv_sec = 0; timeout.tv_usec = 0; } } else { should_wait_forever = true; } } try_select_again: int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout); if (marked_fd_count < 0) { int saved_errno = errno; if (saved_errno == EINTR) { if (m_exit_requested) return; goto try_select_again; } #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop::wait_for_event: " << marked_fd_count << " (" << saved_errno << ": " << strerror(saved_errno) << ")"; #endif // Blow up, similar to Core::safe_syscall. ASSERT_NOT_REACHED(); } if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) { int wake_events[8]; auto nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events)); if (nread < 0) { perror("read from wake pipe"); ASSERT_NOT_REACHED(); } ASSERT(nread > 0); bool wake_requested = false; int event_count = nread / sizeof(wake_events[0]); for (int i = 0; i < event_count; i++) { if (wake_events[i] != 0) dispatch_signal(wake_events[i]); else wake_requested = true; } if (!wake_requested && nread == sizeof(wake_events)) goto retry; } if (!s_timers->is_empty()) { timespec now_spec; clock_gettime(CLOCK_MONOTONIC, &now_spec); now.tv_sec = now_spec.tv_sec; now.tv_usec = now_spec.tv_nsec / 1000; } for (auto& it : *s_timers) { auto& timer = *it.value; if (!timer.has_expired(now)) continue; if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No && it.value->owner && !it.value->owner->is_visible_for_timer_purposes()) { continue; } #ifdef EVENTLOOP_DEBUG dbg() << "Core::EventLoop: Timer " << timer.timer_id << " has expired, sending Core::TimerEvent to " << timer.owner; #endif post_event(*timer.owner, make(timer.timer_id)); if (timer.should_reload) { timer.reload(now); } else { // FIXME: Support removing expired timers that don't want to reload. ASSERT_NOT_REACHED(); } } if (!marked_fd_count) return; for (auto& notifier : *s_notifiers) { if (FD_ISSET(notifier->fd(), &rfds)) { if (notifier->event_mask() & Notifier::Event::Read) post_event(*notifier, make(notifier->fd())); } if (FD_ISSET(notifier->fd(), &wfds)) { if (notifier->event_mask() & Notifier::Event::Write) post_event(*notifier, make(notifier->fd())); } } } bool EventLoopTimer::has_expired(const timeval& now) const { return now.tv_sec > fire_time.tv_sec || (now.tv_sec == fire_time.tv_sec && now.tv_usec >= fire_time.tv_usec); } void EventLoopTimer::reload(const timeval& now) { fire_time = now; fire_time.tv_sec += interval / 1000; fire_time.tv_usec += (interval % 1000) * 1000; } Optional EventLoop::get_next_timer_expiration() { Optional soonest {}; for (auto& it : *s_timers) { auto& fire_time = it.value->fire_time; if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No && it.value->owner && !it.value->owner->is_visible_for_timer_purposes()) { continue; } if (!soonest.has_value() || fire_time.tv_sec < soonest.value().tv_sec || (fire_time.tv_sec == soonest.value().tv_sec && fire_time.tv_usec < soonest.value().tv_usec)) soonest = fire_time; } return soonest; } int EventLoop::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible) { ASSERT(milliseconds >= 0); auto timer = make(); timer->owner = object.make_weak_ptr(); timer->interval = milliseconds; timeval now; timespec now_spec; clock_gettime(CLOCK_MONOTONIC, &now_spec); now.tv_sec = now_spec.tv_sec; now.tv_usec = now_spec.tv_nsec / 1000; timer->reload(now); timer->should_reload = should_reload; timer->fire_when_not_visible = fire_when_not_visible; int timer_id = s_id_allocator->allocate(); timer->timer_id = timer_id; s_timers->set(timer_id, move(timer)); return timer_id; } bool EventLoop::unregister_timer(int timer_id) { s_id_allocator->deallocate(timer_id); auto it = s_timers->find(timer_id); if (it == s_timers->end()) return false; s_timers->remove(it); return true; } void EventLoop::register_notifier(Badge, Notifier& notifier) { s_notifiers->set(¬ifier); } void EventLoop::unregister_notifier(Badge, Notifier& notifier) { s_notifiers->remove(¬ifier); } void EventLoop::wake() { int wake_event = 0; int nwritten = write(s_wake_pipe_fds[1], &wake_event, sizeof(wake_event)); if (nwritten < 0) { perror("EventLoop::wake: write"); ASSERT_NOT_REACHED(); } } EventLoop::QueuedEvent::QueuedEvent(Object& receiver, NonnullOwnPtr event) : receiver(receiver.make_weak_ptr()) , event(move(event)) { } EventLoop::QueuedEvent::QueuedEvent(QueuedEvent&& other) : receiver(other.receiver) , event(move(other.event)) { } EventLoop::QueuedEvent::~QueuedEvent() { } }