/* * Copyright (c) 2023-2024, MacDue * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif // This an implementation of edge-flag scanline AA, as described in: // https://mlab.taik.fi/~kkallio/antialiasing/EdgeFlagAA.pdf namespace Gfx { static Vector prepare_edges(ReadonlySpan lines, unsigned samples_per_pixel, FloatPoint origin, int top_clip_scanline, int bottom_clip_scanline, int& min_edge_y, int& max_edge_y) { Vector edges; edges.ensure_capacity(lines.size()); // The first visible y value. auto top_clip = top_clip_scanline * int(samples_per_pixel); // The last visible y value. auto bottom_clip = (bottom_clip_scanline + 1) * int(samples_per_pixel); min_edge_y = bottom_clip; max_edge_y = top_clip; for (auto& line : lines) { auto p0 = line.a() - origin; auto p1 = line.b() - origin; p0.scale_by(1, samples_per_pixel); p1.scale_by(1, samples_per_pixel); i8 winding = -1; if (p0.y() > p1.y()) { swap(p0, p1); } else { winding = 1; } if (p0.y() == p1.y()) continue; auto min_y = static_cast(p0.y()); auto max_y = static_cast(p1.y()); // Clip edges that start below the bottom clip... if (min_y > bottom_clip) continue; // ...and edges that end before the top clip. if (max_y < top_clip) continue; auto start_x = p0.x(); auto end_x = p1.x(); auto dx = end_x - start_x; auto dy = max_y - min_y; if (dy == 0) continue; auto dxdy = dx / dy; // Trim off the non-visible portions of the edge. if (min_y < top_clip) { start_x += dxdy * (top_clip - min_y); min_y = top_clip; } if (max_y > bottom_clip) max_y = bottom_clip; min_edge_y = min(min_y, min_edge_y); max_edge_y = max(max_y, max_edge_y); edges.unchecked_append(Detail::Edge { start_x, min_y, max_y, dxdy, winding, nullptr }); } return edges; } template EdgeFlagPathRasterizer::EdgeFlagPathRasterizer(IntSize size) : m_size(size.width() + 1, size.height() + 1) { } template void EdgeFlagPathRasterizer::fill(DeprecatedPainter& painter, DeprecatedPath const& path, Color color, WindingRule winding_rule, FloatPoint offset) { fill_internal(painter, path, color, winding_rule, offset); } template void EdgeFlagPathRasterizer::fill(DeprecatedPainter& painter, DeprecatedPath const& path, PaintStyle const& style, float opacity, WindingRule winding_rule, FloatPoint offset) { style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) { if (opacity == 0.0f) return; if (opacity != 1.0f) { return fill_internal( painter, path, [=, sampler = move(sampler)](IntPoint point) { return sampler(point).with_opacity(opacity); }, winding_rule, offset); } return fill_internal(painter, path, move(sampler), winding_rule, offset); }); } template void EdgeFlagPathRasterizer::fill_internal(DeprecatedPainter& painter, DeprecatedPath const& path, auto color_or_function, WindingRule winding_rule, FloatPoint offset) { auto bounding_box = enclosing_int_rect(path.bounding_box().translated(offset)); auto dest_rect = bounding_box.translated(painter.translation()); auto origin = bounding_box.top_left().to_type() - offset; m_blit_origin = dest_rect.top_left(); m_clip = dest_rect.intersected(painter.clip_rect()); // Only allocate enough to plot the parts of the scanline that could be visible. // Note: This can't clip the LHS. auto scanline_length = min(m_size.width(), m_clip.right() - m_blit_origin.x()); if (scanline_length <= 0) return; m_scanline.resize(scanline_length); if (m_clip.is_empty()) return; auto lines = path.split_lines(); if (lines.is_empty()) return; int min_edge_y = 0; int max_edge_y = 0; auto top_clip_scanline = m_clip.top() - m_blit_origin.y(); auto bottom_clip_scanline = m_clip.bottom() - m_blit_origin.y() - 1; auto edges = prepare_edges(lines, SamplesPerPixel, origin, top_clip_scanline, bottom_clip_scanline, min_edge_y, max_edge_y); if (edges.is_empty()) return; int min_scanline = min_edge_y / SamplesPerPixel; int max_scanline = max_edge_y / SamplesPerPixel; m_edge_table.set_scanline_range(min_scanline, max_scanline); for (auto& edge : edges) { // Create a linked-list of edges starting on this scanline: int start_scanline = edge.min_y / SamplesPerPixel; edge.next_edge = m_edge_table[start_scanline]; m_edge_table[start_scanline] = &edge; } auto empty_edge_extent = [&] { return EdgeExtent { m_size.width() - 1, 0 }; }; auto for_each_sample = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent, auto callback) { for (int y = start_subpixel_y; y < end_subpixel_y; y++) { auto xi = static_cast(edge.x + SubpixelSample::nrooks_subpixel_offsets[y]); if (xi >= 0 && size_t(xi) < m_scanline.size()) [[likely]] { SampleType sample = 1 << y; callback(xi, y, sample); } else if (xi < 0) { if (edge.dxdy <= 0) return; } else { xi = m_scanline.size() - 1; } edge.x += edge.dxdy; edge_extent.min_x = min(edge_extent.min_x, xi); edge_extent.max_x = max(edge_extent.max_x, xi); } }; Detail::Edge* active_edges = nullptr; if (winding_rule == WindingRule::EvenOdd) { auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent) { for_each_sample(edge, start_subpixel_y, end_subpixel_y, edge_extent, [&](int xi, int, SampleType sample) { m_scanline[xi] ^= sample; }); }; for (int scanline = min_scanline; scanline <= max_scanline; scanline++) { auto edge_extent = empty_edge_extent(); active_edges = plot_edges_for_scanline(scanline, plot_edge, edge_extent, active_edges); write_scanline(painter, scanline, edge_extent, color_or_function); } } else { VERIFY(winding_rule == WindingRule::Nonzero); // Only allocate the winding buffer if needed. // NOTE: non-zero fills are a fair bit less efficient. So if you can do an even-odd fill do that :^) if (m_windings.is_empty()) m_windings.resize(m_scanline.size()); auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent) { for_each_sample(edge, start_subpixel_y, end_subpixel_y, edge_extent, [&](int xi, int y, SampleType sample) { m_scanline[xi] |= sample; m_windings[xi].counts[y] += edge.winding; }); }; for (int scanline = min_scanline; scanline <= max_scanline; scanline++) { auto edge_extent = empty_edge_extent(); active_edges = plot_edges_for_scanline(scanline, plot_edge, edge_extent, active_edges); write_scanline(painter, scanline, edge_extent, color_or_function); } } } ALWAYS_INLINE static auto switch_on_color_or_function(auto& color_or_function, auto color_case, auto function_case) { using ColorOrFunction = decltype(color_or_function); constexpr bool has_constant_color = IsSame, Color>; if constexpr (has_constant_color) { return color_case(color_or_function); } else { return function_case(color_or_function); } } template Color EdgeFlagPathRasterizer::scanline_color(int scanline, int offset, u8 alpha, auto& color_or_function) { auto color = switch_on_color_or_function( color_or_function, [](Color color) { return color; }, [&](auto& function) { return function({ offset, scanline }); }); if (color.alpha() == 255) return color.with_alpha(alpha, AlphaType::Premultiplied); return color.with_alpha(color.alpha() * alpha / 255, AlphaType::Premultiplied); } template __attribute__((hot)) Detail::Edge* EdgeFlagPathRasterizer::plot_edges_for_scanline(int scanline, auto plot_edge, EdgeExtent& edge_extent, Detail::Edge* active_edges) { auto y_subpixel = [](int y) { return y & (SamplesPerPixel - 1); }; auto* current_edge = active_edges; Detail::Edge* prev_edge = nullptr; // First iterate over the edge in the active edge table, these are edges added on earlier scanlines, // that have not yet reached their end scanline. while (current_edge) { int end_scanline = current_edge->max_y / SamplesPerPixel; if (scanline == end_scanline) { // This edge ends this scanline. plot_edge(*current_edge, 0, y_subpixel(current_edge->max_y), edge_extent); // Remove this edge from the AET current_edge = current_edge->next_edge; if (prev_edge) prev_edge->next_edge = current_edge; else active_edges = current_edge; } else { // This edge sticks around for a few more scanlines. plot_edge(*current_edge, 0, SamplesPerPixel, edge_extent); prev_edge = current_edge; current_edge = current_edge->next_edge; } } // Next, iterate over new edges for this line. If active_edges was null this also becomes the new // AET. Edges new will be appended here. current_edge = m_edge_table[scanline]; while (current_edge) { int end_scanline = current_edge->max_y / SamplesPerPixel; if (scanline == end_scanline) { // This edge will end this scanlines (no need to add to AET). plot_edge(*current_edge, y_subpixel(current_edge->min_y), y_subpixel(current_edge->max_y), edge_extent); } else { // This edge will live on for a few more scanlines. plot_edge(*current_edge, y_subpixel(current_edge->min_y), SamplesPerPixel, edge_extent); // Add this edge to the AET if (prev_edge) prev_edge->next_edge = current_edge; else active_edges = current_edge; prev_edge = current_edge; } current_edge = current_edge->next_edge; } if (prev_edge) prev_edge->next_edge = nullptr; m_edge_table[scanline] = nullptr; return active_edges; } template auto EdgeFlagPathRasterizer::accumulate_even_odd_scanline(EdgeExtent edge_extent, auto init, auto sample_callback) { SampleType sample = init; VERIFY(edge_extent.min_x >= 0); VERIFY(edge_extent.max_x < static_cast(m_scanline.size())); for (int x = edge_extent.min_x; x <= edge_extent.max_x; x++) { sample ^= m_scanline.data()[x]; sample_callback(x, sample); m_scanline.data()[x] = 0; } return sample; } template auto EdgeFlagPathRasterizer::accumulate_non_zero_scanline(EdgeExtent edge_extent, auto init, auto sample_callback) { NonZeroAcc acc = init; VERIFY(edge_extent.min_x >= 0); VERIFY(edge_extent.max_x < static_cast(m_scanline.size())); for (int x = edge_extent.min_x; x <= edge_extent.max_x; x++) { if (auto edges = m_scanline.data()[x]) { // We only need to process the windings when we hit some edges. for (auto y_sub = 0u; y_sub < SamplesPerPixel; y_sub++) { auto subpixel_bit = 1 << y_sub; if (edges & subpixel_bit) { auto winding = m_windings.data()[x].counts[y_sub]; auto previous_winding_count = acc.winding.counts[y_sub]; acc.winding.counts[y_sub] += winding; // Toggle fill on change to/from zero. if (bool(previous_winding_count) ^ bool(acc.winding.counts[y_sub])) acc.sample ^= subpixel_bit; } } } sample_callback(x, acc.sample); m_scanline.data()[x] = 0; m_windings.data()[x] = {}; } return acc; } template template auto EdgeFlagPathRasterizer::accumulate_scanline(EdgeExtent edge_extent, auto init, Callback callback) { if constexpr (WindingRule == WindingRule::EvenOdd) return accumulate_even_odd_scanline(edge_extent, init, callback); else return accumulate_non_zero_scanline(edge_extent, init, callback); } template void EdgeFlagPathRasterizer::write_pixel(BitmapFormat format, ARGB32* scanline_ptr, int scanline, int offset, SampleType sample, auto& color_or_function) { if (!sample) return; auto dest_x = offset + m_blit_origin.x(); auto coverage = SubpixelSample::compute_coverage(sample); auto paint_color = scanline_color(scanline, offset, coverage_to_alpha(coverage), color_or_function); scanline_ptr[dest_x] = color_for_format(format, scanline_ptr[dest_x]).blend(paint_color).value(); } template void EdgeFlagPathRasterizer::fast_fill_solid_color_span(ARGB32* scanline_ptr, int start, int end, Color color) { auto start_x = start + m_blit_origin.x(); auto end_x = end + m_blit_origin.x(); fast_u32_fill(scanline_ptr + start_x, color.value(), end_x - start_x + 1); } template template FLATTEN __attribute__((hot)) void EdgeFlagPathRasterizer::write_scanline(DeprecatedPainter& painter, int scanline, EdgeExtent edge_extent, auto& color_or_function) { // Handle scanline clipping. auto left_clip = m_clip.left() - m_blit_origin.x(); EdgeExtent clipped_extent { max(left_clip, edge_extent.min_x), edge_extent.max_x }; if (clipped_extent.min_x > clipped_extent.max_x) { // Fully clipped. Unfortunately we still need to zero the scanline data. edge_extent.memset_extent(m_scanline.data(), 0); if constexpr (WindingRule == WindingRule::Nonzero) edge_extent.memset_extent(m_windings.data(), 0); return; } // Accumulate non-visible section (without plotting pixels). auto acc = accumulate_scanline(EdgeExtent { edge_extent.min_x, left_clip - 1 }, initial_acc(), [](int, SampleType) { // Do nothing! }); // Get pointer to current scanline pixels. auto dest_format = painter.target().format(); auto dest_ptr = painter.target().scanline(scanline + m_blit_origin.y()); // Simple case: Handle each pixel individually. // Used for PaintStyle fills and semi-transparent colors. auto write_scanline_pixelwise = [&](auto& color_or_function) { accumulate_scanline(clipped_extent, acc, [&](int x, SampleType sample) { write_pixel(dest_format, dest_ptr, scanline, x, sample, color_or_function); }); }; // Fast fill case: Track spans of solid color and set the entire span via a fast_u32_fill(). // Used for opaque colors (i.e. alpha == 255). auto write_scanline_with_fast_fills = [&](Color color) { if (color.alpha() != 255) return write_scanline_pixelwise(color); constexpr SampleType full_coverage = NumericLimits::max(); int full_coverage_count = 0; accumulate_scanline(clipped_extent, acc, [&](int x, SampleType sample) { if (sample == full_coverage) { full_coverage_count++; return; } else { write_pixel(dest_format, dest_ptr, scanline, x, sample, color); } if (full_coverage_count > 0) { fast_fill_solid_color_span(dest_ptr, x - full_coverage_count, x - 1, color); full_coverage_count = 0; } }); if (full_coverage_count > 0) fast_fill_solid_color_span(dest_ptr, clipped_extent.max_x - full_coverage_count + 1, clipped_extent.max_x, color); }; switch_on_color_or_function( color_or_function, write_scanline_with_fast_fills, write_scanline_pixelwise); } static IntSize path_bounds(Gfx::DeprecatedPath const& path) { return enclosing_int_rect(path.bounding_box()).size(); } // Note: The AntiAliasingPainter and DeprecatedPainter now perform the same antialiasing, // since it would be harder to turn it off for the standard painter. // The samples are reduced to 8 for Gfx::DeprecatedPainter though as a "speedy" option. void DeprecatedPainter::fill_path(DeprecatedPath const& path, Color color, WindingRule winding_rule) { EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path)); rasterizer.fill(*this, path, color, winding_rule); } void DeprecatedPainter::fill_path(DeprecatedPath const& path, PaintStyle const& paint_style, float opacity, WindingRule winding_rule) { EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path)); rasterizer.fill(*this, path, paint_style, opacity, winding_rule); } void AntiAliasingPainter::fill_path(DeprecatedPath const& path, Color color, WindingRule winding_rule) { EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path)); rasterizer.fill(m_underlying_painter, path, color, winding_rule, {}); } void AntiAliasingPainter::fill_path(DeprecatedPath const& path, PaintStyle const& paint_style, float opacity, WindingRule winding_rule) { EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path)); rasterizer.fill(m_underlying_painter, path, paint_style, opacity, winding_rule, {}); } template class EdgeFlagPathRasterizer<8>; template class EdgeFlagPathRasterizer<16>; template class EdgeFlagPathRasterizer<32>; }