/* * Copyright (c) 2018-2022, Andreas Kling * Copyright (c) 2021, Idan Horowitz * Copyright (c) 2021, Mustafa Quraish * Copyright (c) 2021, Sam Atkins * Copyright (c) 2022, Tobias Christiansen * Copyright (c) 2022, Linus Groh * Copyright (c) 2022, Jelle Raaijmakers * * SPDX-License-Identifier: BSD-2-Clause */ #include "DeprecatedPainter.h" #include "Bitmap.h" #include #include #include #include #include #include #include #include #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif namespace Gfx { template ALWAYS_INLINE Color get_pixel(Gfx::Bitmap const& bitmap, int x, int y) { if constexpr (format == BitmapFormat::BGRx8888) return Color::from_rgb(bitmap.scanline(y)[x]); if constexpr (format == BitmapFormat::BGRA8888) return Color::from_argb(bitmap.scanline(y)[x]); return bitmap.get_pixel(x, y); } DeprecatedPainter::DeprecatedPainter(Gfx::Bitmap& bitmap) : m_target(bitmap) { VERIFY(bitmap.format() == Gfx::BitmapFormat::BGRx8888 || bitmap.format() == Gfx::BitmapFormat::BGRA8888); m_state_stack.append(State()); state().clip_rect = { { 0, 0 }, bitmap.size() }; } void DeprecatedPainter::clear_rect(IntRect const& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(target().rect().contains(rect)); ARGB32* dst = target().scanline(rect.top()) + rect.left(); size_t const dst_skip = target().pitch() / sizeof(ARGB32); for (int i = rect.height() - 1; i >= 0; --i) { fast_u32_fill(dst, color.value(), rect.width()); dst += dst_skip; } } void DeprecatedPainter::fill_physical_rect(IntRect const& physical_rect, Color color) { // Callers must do clipping. ARGB32* dst = target().scanline(physical_rect.top()) + physical_rect.left(); size_t const dst_skip = target().pitch() / sizeof(ARGB32); auto dst_format = target().format(); for (int i = physical_rect.height() - 1; i >= 0; --i) { for (int j = 0; j < physical_rect.width(); ++j) dst[j] = color_for_format(dst_format, dst[j]).blend(color).value(); dst += dst_skip; } } void DeprecatedPainter::fill_rect(IntRect const& a_rect, Color color) { if (color.alpha() == 0) return; if (color.alpha() == 0xff) { clear_rect(a_rect, color); return; } auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(target().rect().contains(rect)); fill_physical_rect(rect, color); } void DeprecatedPainter::fill_rect(IntRect const& rect, PaintStyle const& paint_style) { auto a_rect = rect.translated(translation()); auto clipped_rect = a_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; auto start_offset = clipped_rect.location() - a_rect.location(); paint_style.paint(a_rect, [&](PaintStyle::SamplerFunction sample) { for (int y = 0; y < clipped_rect.height(); ++y) { for (int x = 0; x < clipped_rect.width(); ++x) { IntPoint point(x, y); set_physical_pixel(point + clipped_rect.location(), sample(point + start_offset), true); } } }); } void DeprecatedPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius) { return fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius); } void DeprecatedPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius) { // Fasttrack for rects without any border radii if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius) return fill_rect(a_rect, color); // Fully transparent, dont care. if (color.alpha() == 0) return; // FIXME: Allow for elliptically rounded corners IntRect top_left_corner = { a_rect.x(), a_rect.y(), top_left_radius, top_left_radius }; IntRect top_right_corner = { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y(), top_right_radius, top_right_radius }; IntRect bottom_right_corner = { a_rect.x() + a_rect.width() - bottom_right_radius, a_rect.y() + a_rect.height() - bottom_right_radius, bottom_right_radius, bottom_right_radius }; IntRect bottom_left_corner = { a_rect.x(), a_rect.y() + a_rect.height() - bottom_left_radius, bottom_left_radius, bottom_left_radius }; IntRect top_rect = { a_rect.x() + top_left_radius, a_rect.y(), a_rect.width() - top_left_radius - top_right_radius, top_left_radius }; IntRect right_rect = { a_rect.x() + a_rect.width() - top_right_radius, a_rect.y() + top_right_radius, top_right_radius, a_rect.height() - top_right_radius - bottom_right_radius }; IntRect bottom_rect = { a_rect.x() + bottom_left_radius, a_rect.y() + a_rect.height() - bottom_right_radius, a_rect.width() - bottom_left_radius - bottom_right_radius, bottom_right_radius }; IntRect left_rect = { a_rect.x(), a_rect.y() + top_left_radius, bottom_left_radius, a_rect.height() - top_left_radius - bottom_left_radius }; IntRect inner = { left_rect.x() + left_rect.width(), left_rect.y(), a_rect.width() - left_rect.width() - right_rect.width(), a_rect.height() - top_rect.height() - bottom_rect.height() }; fill_rect(top_rect, color); fill_rect(right_rect, color); fill_rect(bottom_rect, color); fill_rect(left_rect, color); fill_rect(inner, color); if (top_left_radius) fill_rounded_corner(top_left_corner, top_left_radius, color, CornerOrientation::TopLeft); if (top_right_radius) fill_rounded_corner(top_right_corner, top_right_radius, color, CornerOrientation::TopRight); if (bottom_left_radius) fill_rounded_corner(bottom_left_corner, bottom_left_radius, color, CornerOrientation::BottomLeft); if (bottom_right_radius) fill_rounded_corner(bottom_right_corner, bottom_right_radius, color, CornerOrientation::BottomRight); } void DeprecatedPainter::fill_rounded_corner(IntRect const& a_rect, int radius, Color color, CornerOrientation orientation) { // Care about clipping auto translated_a_rect = a_rect.translated(translation()); auto rect = translated_a_rect.intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(target().rect().contains(rect)); // We got cut on the top! // FIXME: Also account for clipping on the x-axis int clip_offset = 0; if (translated_a_rect.y() < rect.y()) clip_offset = rect.y() - translated_a_rect.y(); ARGB32* dst = target().scanline(rect.top()) + rect.left(); size_t const dst_skip = target().pitch() / sizeof(ARGB32); IntPoint circle_center; switch (orientation) { case CornerOrientation::TopLeft: circle_center = { radius, radius + 1 }; break; case CornerOrientation::TopRight: circle_center = { -1, radius + 1 }; break; case CornerOrientation::BottomRight: circle_center = { -1, 0 }; break; case CornerOrientation::BottomLeft: circle_center = { radius, 0 }; break; default: VERIFY_NOT_REACHED(); } int radius2 = radius * radius; auto is_in_circle = [&](int x, int y) { int distance2 = (circle_center.x() - x) * (circle_center.x() - x) + (circle_center.y() - y) * (circle_center.y() - y); // To reflect the grid and be compatible with the draw_circle_arc_intersecting algorithm // add 1/2 to the radius return distance2 <= (radius2 + radius + 0.25); }; auto dst_format = target().format(); for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) if (is_in_circle(j, rect.height() - i + clip_offset)) dst[j] = color_for_format(dst_format, dst[j]).blend(color).value(); dst += dst_skip; } } // The callback will only be called for a quarter of the ellipse, the user is intended to deduce other points. // As the coordinate space is relative to the center of the rectangle, it's simply (x, y), (x, -y), (-x, y) and (-x, -y). static void on_each_ellipse_point(IntRect const& rect, Function&& callback) { // Note: This is an implementation of the Midpoint Ellipse Algorithm. double const a = rect.width() / 2; double const a_square = a * a; double const b = rect.height() / 2; double const b_square = b * b; int x = 0; auto y = static_cast(b); double dx = 2 * b_square * x; double dy = 2 * a_square * y; // For region 1: auto decision_parameter = b_square - a_square * b + .25 * a_square; while (dx < dy) { callback({ x, y }); if (decision_parameter >= 0) { y--; dy -= 2 * a_square; decision_parameter -= dy; } x++; dx += 2 * b_square; decision_parameter += dx + b_square; } // For region 2: decision_parameter = b_square * ((x + 0.5) * (x + 0.5)) + a_square * ((y - 1) * (y - 1)) - a_square * b_square; while (y >= 0) { callback({ x, y }); if (decision_parameter <= 0) { x++; dx += 2 * b_square; decision_parameter += dx; } y--; dy -= 2 * a_square; decision_parameter += a_square - dy; } } void DeprecatedPainter::fill_ellipse(IntRect const& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; VERIFY(target().rect().contains(rect)); auto const center = a_rect.center(); on_each_ellipse_point(rect, [this, &color, center](IntPoint position) { IntPoint const directions[4] = { { position.x(), position.y() }, { -position.x(), position.y() }, { position.x(), -position.y() }, { -position.x(), -position.y() } }; draw_line(center + directions[0], center + directions[1], color); draw_line(center + directions[2], center + directions[3], color); }); } template static void for_each_pixel_around_rect_clockwise(RectType const& rect, Callback callback) { if (rect.is_empty()) return; for (auto x = rect.left(); x < rect.right(); ++x) callback(x, rect.top()); for (auto y = rect.top() + 1; y < rect.bottom(); ++y) callback(rect.right() - 1, y); for (auto x = rect.right() - 2; x >= rect.left(); --x) callback(x, rect.bottom() - 1); for (auto y = rect.bottom() - 2; y > rect.top(); --y) callback(rect.left(), y); } void DeprecatedPainter::draw_rect(IntRect const& a_rect, Color color, bool rough) { IntRect rect = a_rect.translated(translation()); auto clipped_rect = rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int min_y = clipped_rect.top(); int max_y = clipped_rect.bottom() - 1; if (rect.top() >= clipped_rect.top() && rect.top() < clipped_rect.bottom()) { int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width(); if (width > 0) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); fill_physical_scanline(rect.top(), start_x, width, color); } ++min_y; } if (rect.bottom() > clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) { int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width(); if (width > 0) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); fill_physical_scanline(max_y, start_x, width, color); } --max_y; } bool draw_left_side = rect.left() >= clipped_rect.left(); bool draw_right_side = rect.right() == clipped_rect.right(); if (draw_left_side && draw_right_side) { // Specialized loop when drawing both sides. for (int y = min_y; y <= max_y; ++y) { auto* bits = target().scanline(y); set_physical_pixel(bits[rect.left()], color); set_physical_pixel(bits[(rect.right() - 1)], color); } } else { for (int y = min_y; y <= max_y; ++y) { auto* bits = target().scanline(y); if (draw_left_side) set_physical_pixel(bits[rect.left()], color); if (draw_right_side) set_physical_pixel(bits[(rect.right() - 1)], color); } } } struct BlitState { enum AlphaState { NoAlpha = 0, SrcAlpha = 1, DstAlpha = 2, BothAlpha = SrcAlpha | DstAlpha }; ARGB32 const* src; ARGB32* dst; size_t src_pitch; size_t dst_pitch; int row_count; int column_count; float opacity; BitmapFormat src_format; }; // FIXME: This is a hack to support blit_with_opacity() with RGBA8888 source. // Ideally we'd have a more generic solution that allows any source format. static void swap_red_and_blue_channels(Color& color) { u32 rgba = color.value(); u32 bgra = (rgba & 0xff00ff00) | ((rgba & 0x000000ff) << 16) | ((rgba & 0x00ff0000) >> 16); color = Color::from_argb(bgra); } // FIXME: This function is very unoptimized. template static void do_blit_with_opacity(BlitState& state) { for (int row = 0; row < state.row_count; ++row) { for (int x = 0; x < state.column_count; ++x) { Color dest_color = (has_alpha & BlitState::DstAlpha) ? Color::from_argb(state.dst[x]) : Color::from_rgb(state.dst[x]); if constexpr (has_alpha & BlitState::SrcAlpha) { Color src_color_with_alpha = Color::from_argb(state.src[x]); if (state.src_format == BitmapFormat::RGBA8888) swap_red_and_blue_channels(src_color_with_alpha); float pixel_opacity = src_color_with_alpha.alpha() / 255.0; src_color_with_alpha.set_alpha(255 * (state.opacity * pixel_opacity)); state.dst[x] = dest_color.blend(src_color_with_alpha).value(); } else { Color src_color_with_alpha = Color::from_rgb(state.src[x]); if (state.src_format == BitmapFormat::RGBA8888) swap_red_and_blue_channels(src_color_with_alpha); src_color_with_alpha.set_alpha(state.opacity * 255); state.dst[x] = dest_color.blend(src_color_with_alpha).value(); } } state.dst += state.dst_pitch; state.src += state.src_pitch; } } void DeprecatedPainter::blit_with_opacity(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, float opacity, bool apply_alpha) { if (opacity >= 1.0f && !(source.has_alpha_channel() && apply_alpha)) return blit(position, source, src_rect); IntRect safe_src_rect = IntRect::intersection(src_rect, source.rect()); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); int const last_column = clipped_rect.right() - dst_rect.left(); BlitState blit_state { .src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column, .dst = target().scanline(clipped_rect.y()) + clipped_rect.x(), .src_pitch = source.pitch() / sizeof(ARGB32), .dst_pitch = target().pitch() / sizeof(ARGB32), .row_count = last_row - first_row, .column_count = last_column - first_column, .opacity = opacity, .src_format = source.format(), }; if (source.has_alpha_channel() && apply_alpha) { if (target().has_alpha_channel()) do_blit_with_opacity(blit_state); else do_blit_with_opacity(blit_state); } else { if (target().has_alpha_channel()) do_blit_with_opacity(blit_state); else do_blit_with_opacity(blit_state); } } void DeprecatedPainter::blit_filtered(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, Function const& filter, bool apply_alpha) { IntRect safe_src_rect = src_rect.intersected(source.rect()); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); int const last_column = clipped_rect.right() - dst_rect.left(); ARGB32* dst = target().scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = target().pitch() / sizeof(ARGB32); auto dst_format = target().format(); auto src_format = source.format(); ARGB32 const* src = source.scanline(safe_src_rect.top() + first_row) + safe_src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(ARGB32); for (int row = first_row; row < last_row; ++row) { for (int x = 0; x < (last_column - first_column); ++x) { auto source_color = color_for_format(src_format, src[x]); if (source_color.alpha() == 0) continue; auto filtered_color = filter(source_color); if (!apply_alpha || filtered_color.alpha() == 0xff) dst[x] = filtered_color.value(); else dst[x] = color_for_format(dst_format, dst[x]).blend(filtered_color).value(); } dst += dst_skip; src += src_skip; } } void DeprecatedPainter::blit(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, float opacity, bool apply_alpha) { if (opacity < 1.0f || (source.has_alpha_channel() && apply_alpha)) return blit_with_opacity(position, source, src_rect, opacity, apply_alpha); auto safe_src_rect = src_rect.intersected(source.rect()); // If we get here, the DeprecatedPainter might have a scale factor, but the source bitmap has the same scale factor. // We need to transform from logical to physical coordinates, but we can just copy pixels without resampling. auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int const first_row = clipped_rect.top() - dst_rect.top(); int const last_row = clipped_rect.bottom() - dst_rect.top(); int const first_column = clipped_rect.left() - dst_rect.left(); ARGB32* dst = target().scanline(clipped_rect.y()) + clipped_rect.x(); size_t const dst_skip = target().pitch() / sizeof(ARGB32); if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) { ARGB32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(ARGB32); for (int row = first_row; row < last_row; ++row) { memcpy(dst, src, sizeof(ARGB32) * clipped_rect.width()); dst += dst_skip; src += src_skip; } return; } if (source.format() == BitmapFormat::RGBA8888) { u32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; size_t const src_skip = source.pitch() / sizeof(u32); for (int row = first_row; row < last_row; ++row) { for (int i = 0; i < clipped_rect.width(); ++i) { u32 rgba = src[i]; u32 bgra = (rgba & 0xff00ff00) | ((rgba & 0x000000ff) << 16) | ((rgba & 0x00ff0000) >> 16); dst[i] = bgra; } dst += dst_skip; src += src_skip; } return; } VERIFY_NOT_REACHED(); } template ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& src_rect, Gfx::Bitmap const& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity) { bool has_opacity = opacity != 1.0f; for (int y = 0; y < src_rect.height(); ++y) { int dst_y = dst_rect.y() + y * vfactor; for (int x = 0; x < src_rect.width(); ++x) { auto src_pixel = get_pixel(source, x + src_rect.left(), y + src_rect.top()); if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); for (int yo = 0; yo < vfactor; ++yo) { auto* scanline = (Color*)target.scanline(dst_y + yo); int dst_x = dst_rect.x() + x * hfactor; for (int xo = 0; xo < hfactor; ++xo) { if constexpr (has_alpha_channel) scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel); else scanline[dst_x + xo] = src_pixel; } } } } } template ALWAYS_INLINE static void do_draw_box_sampled_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity) { float source_pixel_width = src_rect.width() / dst_rect.width(); float source_pixel_height = src_rect.height() / dst_rect.height(); float source_pixel_area = source_pixel_width * source_pixel_height; FloatRect const pixel_box = { 0.f, 0.f, 1.f, 1.f }; for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) { auto* scanline = reinterpret_cast(target.scanline(y)); for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) { // Project the destination pixel in the source image FloatRect const source_box = { src_rect.left() + (x - dst_rect.x()) * source_pixel_width, src_rect.top() + (y - dst_rect.y()) * source_pixel_height, source_pixel_width, source_pixel_height, }; IntRect enclosing_source_box = enclosing_int_rect(source_box).intersected(source.rect()); // Sum the contribution of all source pixels inside the projected pixel float red_accumulator = 0.f; float green_accumulator = 0.f; float blue_accumulator = 0.f; float total_area = 0.f; for (int sy = enclosing_source_box.y(); sy < enclosing_source_box.bottom(); ++sy) { for (int sx = enclosing_source_box.x(); sx < enclosing_source_box.right(); ++sx) { float area = source_box.intersected(pixel_box.translated(sx, sy)).size().area(); auto pixel = get_pixel(source, sx, sy); area *= pixel.alpha() / 255.f; red_accumulator += pixel.red() * area; green_accumulator += pixel.green() * area; blue_accumulator += pixel.blue() * area; total_area += area; } } Color src_pixel = { round_to(min(red_accumulator / total_area, 255.f)), round_to(min(green_accumulator / total_area, 255.f)), round_to(min(blue_accumulator / total_area, 255.f)), round_to(min(total_area * 255.f / source_pixel_area * opacity, 255.f)), }; if constexpr (has_alpha_channel) scanline[x] = scanline[x].blend(src_pixel); else scanline[x] = src_pixel; } } } template ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity) { auto int_src_rect = enclosing_int_rect(src_rect); auto clipped_src_rect = int_src_rect.intersected(source.rect()); if (clipped_src_rect.is_empty()) return; if constexpr (scaling_mode == ScalingMode::NearestNeighbor || scaling_mode == ScalingMode::SmoothPixels) { if (dst_rect == clipped_rect && int_src_rect == src_rect && !(dst_rect.width() % int_src_rect.width()) && !(dst_rect.height() % int_src_rect.height())) { int hfactor = dst_rect.width() / int_src_rect.width(); int vfactor = dst_rect.height() / int_src_rect.height(); if (hfactor == 2 && vfactor == 2) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 2, 2, get_pixel, opacity); if (hfactor == 3 && vfactor == 3) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 3, 3, get_pixel, opacity); if (hfactor == 4 && vfactor == 4) return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, 4, 4, get_pixel, opacity); return do_draw_integer_scaled_bitmap(target, dst_rect, int_src_rect, source, hfactor, vfactor, get_pixel, opacity); } } if constexpr (scaling_mode == ScalingMode::BoxSampling) return do_draw_box_sampled_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); bool has_opacity = opacity != 1.f; i64 shift = 1ll << 32; i64 fractional_mask = shift - 1; i64 bilinear_offset_x = (1ll << 31) * (src_rect.width() / dst_rect.width() - 1); i64 bilinear_offset_y = (1ll << 31) * (src_rect.height() / dst_rect.height() - 1); i64 hscale = src_rect.width() * shift / dst_rect.width(); i64 vscale = src_rect.height() * shift / dst_rect.height(); i64 src_left = src_rect.left() * shift; i64 src_top = src_rect.top() * shift; for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) { auto* scanline = reinterpret_cast(target.scanline(y)); auto desired_y = (y - dst_rect.y()) * vscale + src_top; for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) { auto desired_x = (x - dst_rect.x()) * hscale + src_left; Color src_pixel; if constexpr (scaling_mode == ScalingMode::BilinearBlend) { auto shifted_x = desired_x + bilinear_offset_x; auto shifted_y = desired_y + bilinear_offset_y; auto scaled_x0 = clamp(shifted_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1); auto scaled_x1 = clamp((shifted_x >> 32) + 1, clipped_src_rect.left(), clipped_src_rect.right() - 1); auto scaled_y0 = clamp(shifted_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1); auto scaled_y1 = clamp((shifted_y >> 32) + 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1); float x_ratio = (shifted_x & fractional_mask) / static_cast(shift); float y_ratio = (shifted_y & fractional_mask) / static_cast(shift); auto top_left = get_pixel(source, scaled_x0, scaled_y0); auto top_right = get_pixel(source, scaled_x1, scaled_y0); auto bottom_left = get_pixel(source, scaled_x0, scaled_y1); auto bottom_right = get_pixel(source, scaled_x1, scaled_y1); auto top = top_left.mixed_with(top_right, x_ratio); auto bottom = bottom_left.mixed_with(bottom_right, x_ratio); src_pixel = top.mixed_with(bottom, y_ratio); } else if constexpr (scaling_mode == ScalingMode::SmoothPixels) { auto scaled_x1 = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1); auto scaled_x0 = clamp(scaled_x1 - 1, clipped_src_rect.left(), clipped_src_rect.right() - 1); auto scaled_y1 = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1); auto scaled_y0 = clamp(scaled_y1 - 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1); float x_ratio = (desired_x & fractional_mask) / (float)shift; float y_ratio = (desired_y & fractional_mask) / (float)shift; float scaled_x_ratio = clamp(x_ratio * dst_rect.width() / (float)src_rect.width(), 0.f, 1.f); float scaled_y_ratio = clamp(y_ratio * dst_rect.height() / (float)src_rect.height(), 0.f, 1.f); auto top_left = get_pixel(source, scaled_x0, scaled_y0); auto top_right = get_pixel(source, scaled_x1, scaled_y0); auto bottom_left = get_pixel(source, scaled_x0, scaled_y1); auto bottom_right = get_pixel(source, scaled_x1, scaled_y1); auto top = top_left.mixed_with(top_right, scaled_x_ratio); auto bottom = bottom_left.mixed_with(bottom_right, scaled_x_ratio); src_pixel = top.mixed_with(bottom, scaled_y_ratio); } else { auto scaled_x = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1); auto scaled_y = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1); src_pixel = get_pixel(source, scaled_x, scaled_y); } if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); if constexpr (has_alpha_channel) scanline[x] = scanline[x].blend(src_pixel); else scanline[x] = src_pixel; } } } template ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity, ScalingMode scaling_mode) { switch (scaling_mode) { case ScalingMode::NearestNeighbor: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case ScalingMode::SmoothPixels: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case ScalingMode::BilinearBlend: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case ScalingMode::BoxSampling: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; case ScalingMode::None: do_draw_scaled_bitmap(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity); break; } } void DeprecatedPainter::set_physical_pixel(IntPoint physical_point, Color color, bool blend) { // This function should only be called after translation, clipping, etc has been handled elsewhere // if not use set_pixel(). auto& dst = target().scanline(physical_point.y())[physical_point.x()]; if (!blend || color.alpha() == 255) dst = color.value(); else if (color.alpha()) dst = color_for_format(target().format(), dst).blend(color).value(); } Optional DeprecatedPainter::get_pixel(IntPoint p) { auto point = p; point.translate_by(state().translation); if (!clip_rect().contains(point)) return {}; return target().get_pixel(point); } ALWAYS_INLINE void DeprecatedPainter::set_physical_pixel(u32& pixel, Color color) { // This always sets a single physical pixel, independent of scale(). // This should only be called by routines that already handle scale. pixel = color.value(); } ALWAYS_INLINE void DeprecatedPainter::fill_physical_scanline(int y, int x, int width, Color color) { // This always draws a single physical scanline, independent of scale(). // This should only be called by routines that already handle scale. fast_u32_fill(target().scanline(y) + x, color.value(), width); } void DeprecatedPainter::draw_physical_pixel(IntPoint physical_position, Color color, int thickness) { // This always draws a single physical pixel, independent of scale(). // This should only be called by routines that already handle scale // (including scaling thickness). if (thickness <= 0) return; if (thickness == 1) { // Implies scale() == 1. auto& pixel = target().scanline(physical_position.y())[physical_position.x()]; return set_physical_pixel(pixel, color_for_format(target().format(), pixel).blend(color)); } IntRect rect { physical_position, { thickness, thickness } }; rect.intersect(clip_rect()); fill_physical_rect(rect, color); } void DeprecatedPainter::draw_line(IntPoint a_p1, IntPoint a_p2, Color color, int thickness, LineStyle style, Color alternate_color) { if (clip_rect().is_empty()) return; if (thickness <= 0) return; if (color.alpha() == 0) return; auto clip_rect = this->clip_rect(); auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1; auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2; auto point1 = to_physical(p1); auto point2 = to_physical(p2); auto alternate_color_is_transparent = alternate_color == Color::Transparent; // Special case: vertical line. if (point1.x() == point2.x()) { int const x = point1.x(); if (x < clip_rect.left() || x >= clip_rect.right()) return; if (point1.y() > point2.y()) swap(point1, point2); if (point1.y() >= clip_rect.bottom()) return; if (point2.y() < clip_rect.top()) return; int min_y = max(point1.y(), clip_rect.top()); int max_y = min(point2.y(), clip_rect.bottom() - 1); if (style == LineStyle::Dotted) { for (int y = min_y; y <= max_y; y += thickness * 2) draw_physical_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int y = min_y; y <= max_y; y += thickness * 6) { draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ x, min(y + thickness, max_y) }, color, thickness); draw_physical_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness); if (!alternate_color_is_transparent) { draw_physical_pixel({ x, min(y + thickness * 3, max_y) }, alternate_color, thickness); draw_physical_pixel({ x, min(y + thickness * 4, max_y) }, alternate_color, thickness); draw_physical_pixel({ x, min(y + thickness * 5, max_y) }, alternate_color, thickness); } } } else { for (int y = min_y; y <= max_y; y += thickness) draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ x, max_y }, color, thickness); } return; } // Special case: horizontal line. if (point1.y() == point2.y()) { int const y = point1.y(); if (y < clip_rect.top() || y >= clip_rect.bottom()) return; if (point1.x() > point2.x()) swap(point1, point2); if (point1.x() >= clip_rect.right()) return; if (point2.x() < clip_rect.left()) return; int min_x = max(point1.x(), clip_rect.left()); int max_x = min(point2.x(), clip_rect.right() - 1); if (style == LineStyle::Dotted) { for (int x = min_x; x <= max_x; x += thickness * 2) draw_physical_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int x = min_x; x <= max_x; x += thickness * 6) { draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ min(x + thickness, max_x), y }, color, thickness); draw_physical_pixel({ min(x + thickness * 2, max_x), y }, color, thickness); if (!alternate_color_is_transparent) { draw_physical_pixel({ min(x + thickness * 3, max_x), y }, alternate_color, thickness); draw_physical_pixel({ min(x + thickness * 4, max_x), y }, alternate_color, thickness); draw_physical_pixel({ min(x + thickness * 5, max_x), y }, alternate_color, thickness); } } } else { for (int x = min_x; x <= max_x; x += thickness) draw_physical_pixel({ x, y }, color, thickness); draw_physical_pixel({ max_x, y }, color, thickness); } return; } int const adx = abs(point2.x() - point1.x()); int const ady = abs(point2.y() - point1.y()); if (adx > ady) { if (point1.x() > point2.x()) swap(point1, point2); } else { if (point1.y() > point2.y()) swap(point1, point2); } int const dx = point2.x() - point1.x(); int const dy = point2.y() - point1.y(); int error = 0; size_t number_of_pixels_drawn = 0; auto draw_pixel_in_line = [&](int x, int y) { bool should_draw_line = true; if (style == LineStyle::Dotted && number_of_pixels_drawn % 2 == 1) should_draw_line = false; else if (style == LineStyle::Dashed && number_of_pixels_drawn % 6 >= 3) should_draw_line = false; if (should_draw_line) draw_physical_pixel({ x, y }, color, thickness); else if (!alternate_color_is_transparent) draw_physical_pixel({ x, y }, alternate_color, thickness); number_of_pixels_drawn++; }; if (dx > dy) { int const y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1); int const delta_error = 2 * abs(dy); int y = point1.y(); for (int x = point1.x(); x <= point2.x(); ++x) { if (clip_rect.contains(x, y)) draw_pixel_in_line(x, y); error += delta_error; if (error >= dx) { y += y_step; error -= 2 * dx; } } } else { int const x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1); int const delta_error = 2 * abs(dx); int x = point1.x(); for (int y = point1.y(); y <= point2.y(); ++y) { if (clip_rect.contains(x, y)) draw_pixel_in_line(x, y); error += delta_error; if (error >= dy) { x += x_step; error -= 2 * dy; } } } } static bool can_approximate_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control) { // TODO: Somehow calculate the required number of splits based on the curve (and its size). constexpr float tolerance = 0.5f; auto p1x = 3 * control.x() - 2 * p1.x() - p2.x(); auto p1y = 3 * control.y() - 2 * p1.y() - p2.y(); auto p2x = 3 * control.x() - 2 * p2.x() - p1.x(); auto p2y = 3 * control.y() - 2 * p2.y() - p1.y(); p1x = p1x * p1x; p1y = p1y * p1y; p2x = p2x * p2x; p2y = p2y * p2y; auto error = max(p1x, p2x) + max(p1y, p2y); VERIFY(isfinite(error)); return error <= tolerance; } void DeprecatedPainter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function& callback) { struct SegmentDescriptor { FloatPoint control_point; FloatPoint p1; FloatPoint p2; }; static constexpr auto split_quadratic_bezier_curve = [](FloatPoint original_control, FloatPoint p1, FloatPoint p2, auto& segments) { auto po1_midpoint = original_control + p1; po1_midpoint /= 2; auto po2_midpoint = original_control + p2; po2_midpoint /= 2; auto new_segment = po1_midpoint + po2_midpoint; new_segment /= 2; segments.append({ po2_midpoint, new_segment, p2 }); segments.append({ po1_midpoint, p1, new_segment }); }; Vector segments; segments.append({ control_point, p1, p2 }); while (!segments.is_empty()) { auto segment = segments.take_last(); if (can_approximate_bezier_curve(segment.p1, segment.p2, segment.control_point)) callback(segment.p1, segment.p2); else split_quadratic_bezier_curve(segment.control_point, segment.p1, segment.p2, segments); } } void DeprecatedPainter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function&& callback) { for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback); } void DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function&& callback) { for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, callback); } static bool can_approximate_cubic_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control_0, FloatPoint control_1) { // TODO: Somehow calculate the required number of splits based on the curve (and its size). constexpr float tolerance = 0.5f; auto ax = 3 * control_0.x() - 2 * p1.x() - p2.x(); auto ay = 3 * control_0.y() - 2 * p1.y() - p2.y(); auto bx = 3 * control_1.x() - p1.x() - 2 * p2.x(); auto by = 3 * control_1.y() - p1.y() - 2 * p2.y(); ax *= ax; ay *= ay; bx *= bx; by *= by; auto error = max(ax, bx) + max(ay, by); VERIFY(isfinite(error)); return error <= tolerance; } // static void DeprecatedPainter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function& callback) { struct ControlPair { FloatPoint control_point_0; FloatPoint control_point_1; }; struct SegmentDescriptor { ControlPair control_points; FloatPoint p1; FloatPoint p2; }; static constexpr auto split_cubic_bezier_curve = [](ControlPair const& original_controls, FloatPoint p1, FloatPoint p2, auto& segments) { Array level_1_midpoints { (p1 + original_controls.control_point_0) / 2, (original_controls.control_point_0 + original_controls.control_point_1) / 2, (original_controls.control_point_1 + p2) / 2, }; Array level_2_midpoints { (level_1_midpoints[0] + level_1_midpoints[1]) / 2, (level_1_midpoints[1] + level_1_midpoints[2]) / 2, }; auto level_3_midpoint = (level_2_midpoints[0] + level_2_midpoints[1]) / 2; segments.append({ { level_2_midpoints[1], level_1_midpoints[2] }, level_3_midpoint, p2 }); segments.append({ { level_1_midpoints[0], level_2_midpoints[0] }, p1, level_3_midpoint }); }; Vector segments; segments.append({ { control_point_0, control_point_1 }, p1, p2 }); while (!segments.is_empty()) { auto segment = segments.take_last(); if (can_approximate_cubic_bezier_curve(segment.p1, segment.p2, segment.control_points.control_point_0, segment.control_points.control_point_1)) callback(segment.p1, segment.p2); else split_cubic_bezier_curve(segment.control_points, segment.p1, segment.p2, segments); } } void DeprecatedPainter::add_clip_rect(IntRect const& rect) { state().clip_rect.intersect(rect.translated(translation())); state().clip_rect.intersect(target().rect()); // FIXME: This shouldn't be necessary? } void DeprecatedPainter::stroke_path(DeprecatedPath const& path, Color color, int thickness) { if (thickness <= 0) return; fill_path(path.stroke_to_fill(thickness), color); } }