/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include namespace Gfx { typedef u32 ARGB32; enum class AlphaType { Premultiplied, Unpremultiplied, }; inline bool is_valid_alpha_type(u32 alpha_type) { switch (alpha_type) { case (u32)AlphaType::Premultiplied: case (u32)AlphaType::Unpremultiplied: return true; } return false; } struct HSV { double hue { 0 }; double saturation { 0 }; double value { 0 }; }; struct YUV { float y { 0 }; float u { 0 }; float v { 0 }; }; struct Oklab { float L { 0 }; float a { 0 }; float b { 0 }; }; class Color { public: enum class NamedColor { Transparent, Black, White, Red, Green, Cyan, Blue, Yellow, Magenta, DarkGray, MidGray, LightGray, WarmGray, DarkCyan, DarkGreen, DarkBlue, DarkRed, MidCyan, MidGreen, MidRed, MidBlue, MidMagenta, LightBlue, }; using enum NamedColor; constexpr Color() = default; constexpr Color(NamedColor); constexpr Color(u8 r, u8 g, u8 b) : m_value(0xff000000 | (r << 16) | (g << 8) | b) { } constexpr Color(u8 r, u8 g, u8 b, u8 a) : m_value((a << 24) | (r << 16) | (g << 8) | b) { } static constexpr Color from_rgb(unsigned rgb) { return Color(rgb | 0xff000000); } static constexpr Color from_argb(unsigned argb) { return Color(argb); } static constexpr Color from_yuv(YUV const& yuv) { return from_yuv(yuv.y, yuv.u, yuv.v); } static constexpr Color from_yuv(float y, float u, float v) { // https://www.itu.int/rec/R-REC-BT.1700-0-200502-I/en Table 4, Items 8 and 9 arithmetically inverted float r = y + v / 0.877f; float b = y + u / 0.493f; float g = (y - 0.299f * r - 0.114f * b) / 0.587f; r = clamp(r, 0.0f, 1.0f); g = clamp(g, 0.0f, 1.0f); b = clamp(b, 0.0f, 1.0f); return { static_cast(floorf(r * 255.0f)), static_cast(floorf(g * 255.0f)), static_cast(floorf(b * 255.0f)) }; } // https://www.itu.int/rec/R-REC-BT.1700-0-200502-I/en Table 4 constexpr YUV to_yuv() const { float r = red() / 255.0f; float g = green() / 255.0f; float b = blue() / 255.0f; // Item 8 float y = 0.299f * r + 0.587f * g + 0.114f * b; // Item 9 float u = 0.493f * (b - y); float v = 0.877f * (r - y); y = clamp(y, 0.0f, 1.0f); u = clamp(u, -1.0f, 1.0f); v = clamp(v, -1.0f, 1.0f); return { y, u, v }; } static constexpr Color from_hsl(float h_degrees, float s, float l) { return from_hsla(h_degrees, s, l, 1.0); } static constexpr Color from_hsla(float h_degrees, float s, float l, float a) { // Algorithm from https://www.w3.org/TR/css-color-3/#hsl-color float h = clamp(h_degrees / 360.0f, 0.0f, 1.0f); s = clamp(s, 0.0f, 1.0f); l = clamp(l, 0.0f, 1.0f); a = clamp(a, 0.0f, 1.0f); // HOW TO RETURN hue.to.rgb(m1, m2, h): auto hue_to_rgb = [](float m1, float m2, float h) -> float { // IF h<0: PUT h+1 IN h if (h < 0.0f) h = h + 1.0f; // IF h>1: PUT h-1 IN h if (h > 1.0f) h = h - 1.0f; // IF h*6<1: RETURN m1+(m2-m1)*h*6 if (h * 6.0f < 1.0f) return m1 + (m2 - m1) * h * 6.0f; // IF h*2<1: RETURN m2 if (h * 2.0f < 1.0f) return m2; // IF h*3<2: RETURN m1+(m2-m1)*(2/3-h)*6 if (h * 3.0f < 2.0f) return m1 + (m2 - m1) * (2.0f / 3.0f - h) * 6.0f; // RETURN m1 return m1; }; // SELECT: // l<=0.5: PUT l*(s+1) IN m2 float m2; if (l <= 0.5f) m2 = l * (s + 1.0f); // ELSE: PUT l+s-l*s IN m2 else m2 = l + s - l * s; // PUT l*2-m2 IN m1 float m1 = l * 2.0f - m2; // PUT hue.to.rgb(m1, m2, h+1/3) IN r float r = hue_to_rgb(m1, m2, h + 1.0f / 3.0f); // PUT hue.to.rgb(m1, m2, h ) IN g float g = hue_to_rgb(m1, m2, h); // PUT hue.to.rgb(m1, m2, h-1/3) IN b float b = hue_to_rgb(m1, m2, h - 1.0f / 3.0f); // RETURN (r, g, b) u8 r_u8 = clamp(lroundf(r * 255.0f), 0, 255); u8 g_u8 = clamp(lroundf(g * 255.0f), 0, 255); u8 b_u8 = clamp(lroundf(b * 255.0f), 0, 255); u8 a_u8 = clamp(lroundf(a * 255.0f), 0, 255); return Color(r_u8, g_u8, b_u8, a_u8); } static Color from_a98rgb(float r, float g, float b, float alpha = 1.0f); static Color from_display_p3(float r, float g, float b, float alpha = 1.0f); static Color from_lab(float L, float a, float b, float alpha = 1.0f); static Color from_linear_srgb(float r, float g, float b, float alpha = 1.0f); static Color from_pro_photo_rgb(float r, float g, float b, float alpha = 1.0f); static Color from_rec2020(float r, float g, float b, float alpha = 1.0f); static Color from_xyz50(float x, float y, float z, float alpha = 1.0f); static Color from_xyz65(float x, float y, float z, float alpha = 1.0f); // https://bottosson.github.io/posts/oklab/ static constexpr Color from_oklab(float L, float a, float b, float alpha = 1.0f) { float l = L + 0.3963377774f * a + 0.2158037573f * b; float m = L - 0.1055613458f * a - 0.0638541728f * b; float s = L - 0.0894841775f * a - 1.2914855480f * b; l = l * l * l; m = m * m * m; s = s * s * s; float red = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s; float green = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s; float blue = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s; return from_linear_srgb(red, green, blue, alpha); } // https://bottosson.github.io/posts/oklab/ constexpr Oklab to_oklab() { auto srgb_to_linear = [](float c) { return c >= 0.04045f ? pow((c + 0.055f) / 1.055f, 2.4f) : c / 12.92f; }; float r = srgb_to_linear(red() / 255.f); float g = srgb_to_linear(green() / 255.f); float b = srgb_to_linear(blue() / 255.f); float l = cbrtf(0.4122214708f * r + 0.5363325363f * g + 0.0514459929f * b); float m = cbrtf(0.2119034982f * r + 0.6806995451f * g + 0.1073969566f * b); float s = cbrtf(0.0883024619f * r + 0.2817188376f * g + 0.6299787005f * b); return { 0.2104542553f * l + 0.7936177850f * m - 0.0040720468f * s, 1.9779984951f * l - 2.4285922050f * m + 0.4505937099f * s, 0.0259040371f * l + 0.7827717662f * m - 0.8086757660f * s, }; } constexpr u8 red() const { return (m_value >> 16) & 0xff; } constexpr u8 green() const { return (m_value >> 8) & 0xff; } constexpr u8 blue() const { return m_value & 0xff; } constexpr u8 alpha() const { return (m_value >> 24) & 0xff; } constexpr void set_alpha(u8 value, AlphaType alpha_type = AlphaType::Unpremultiplied) { switch (alpha_type) { case AlphaType::Premultiplied: m_value = value << 24 | (red() * value / 255) << 16 | (green() * value / 255) << 8 | blue() * value / 255; break; case AlphaType::Unpremultiplied: m_value = (m_value & 0x00ffffff) | value << 24; break; default: VERIFY_NOT_REACHED(); } } constexpr void set_red(u8 value) { m_value &= 0xff00ffff; m_value |= value << 16; } constexpr void set_green(u8 value) { m_value &= 0xffff00ff; m_value |= value << 8; } constexpr void set_blue(u8 value) { m_value &= 0xffffff00; m_value |= value; } constexpr Color with_alpha(u8 alpha, AlphaType alpha_type = AlphaType::Unpremultiplied) const { Color color_with_alpha = Color(m_value); color_with_alpha.set_alpha(alpha, alpha_type); return color_with_alpha; } constexpr Color to_unpremultiplied() const { if (alpha() == 0 || alpha() == 255) return *this; return Color( red() * 255 / alpha(), green() * 255 / alpha(), blue() * 255 / alpha(), alpha()); } constexpr Color blend(Color source) const { if (alpha() == 0 || source.alpha() == 255) return source; if (source.alpha() == 0) return *this; int const d = 255 * (alpha() + source.alpha()) - alpha() * source.alpha(); u8 r = (red() * alpha() * (255 - source.alpha()) + source.red() * 255 * source.alpha()) / d; u8 g = (green() * alpha() * (255 - source.alpha()) + source.green() * 255 * source.alpha()) / d; u8 b = (blue() * alpha() * (255 - source.alpha()) + source.blue() * 255 * source.alpha()) / d; u8 a = d / 255; return Color(r, g, b, a); } ALWAYS_INLINE Color mixed_with(Color other, float weight) const { if (alpha() == other.alpha() || with_alpha(0) == other.with_alpha(0)) return interpolate(other, weight); // Fallback to slower, but more visually pleasing premultiplied alpha mix. // This is needed for linear-gradient()s in LibWeb. auto mixed_alpha = mix(alpha(), other.alpha(), weight); auto premultiplied_mix_channel = [&](float channel, float other_channel, float weight) { return round_to(mix(channel * alpha(), other_channel * other.alpha(), weight) / mixed_alpha); }; return Gfx::Color { premultiplied_mix_channel(red(), other.red(), weight), premultiplied_mix_channel(green(), other.green(), weight), premultiplied_mix_channel(blue(), other.blue(), weight), round_to(mixed_alpha), }; } ALWAYS_INLINE Color interpolate(Color other, float weight) const noexcept { return Gfx::Color { round_to(mix(red(), other.red(), weight)), round_to(mix(green(), other.green(), weight)), round_to(mix(blue(), other.blue(), weight)), round_to(mix(alpha(), other.alpha(), weight)), }; } constexpr Color multiply(Color other) const { return Color( red() * other.red() / 255, green() * other.green() / 255, blue() * other.blue() / 255, alpha() * other.alpha() / 255); } constexpr float distance_squared_to(Color other) const { int delta_red = other.red() - red(); int delta_green = other.green() - green(); int delta_blue = other.blue() - blue(); int delta_alpha = other.alpha() - alpha(); auto rgb_distance = (delta_red * delta_red + delta_green * delta_green + delta_blue * delta_blue) / (3.0f * 255 * 255); return delta_alpha * delta_alpha / (2.0f * 255 * 255) + rgb_distance * alpha() * other.alpha() / (255 * 255); } constexpr u8 luminosity() const { return round_to(red() * 0.2126f + green() * 0.7152f + blue() * 0.0722f); } constexpr float contrast_ratio(Color other) { auto l1 = luminosity(); auto l2 = other.luminosity(); auto darkest = min(l1, l2) / 255.; auto brightest = max(l1, l2) / 255.; return (brightest + 0.05) / (darkest + 0.05); } constexpr Color to_grayscale() const { auto gray = luminosity(); return Color(gray, gray, gray, alpha()); } constexpr Color sepia(float amount = 1.0f) const { auto blend_factor = 1.0f - amount; auto r1 = 0.393f + 0.607f * blend_factor; auto r2 = 0.769f - 0.769f * blend_factor; auto r3 = 0.189f - 0.189f * blend_factor; auto g1 = 0.349f - 0.349f * blend_factor; auto g2 = 0.686f + 0.314f * blend_factor; auto g3 = 0.168f - 0.168f * blend_factor; auto b1 = 0.272f - 0.272f * blend_factor; auto b2 = 0.534f - 0.534f * blend_factor; auto b3 = 0.131f + 0.869f * blend_factor; auto r = red(); auto g = green(); auto b = blue(); return Color( clamp(lroundf(r * r1 + g * r2 + b * r3), 0, 255), clamp(lroundf(r * g1 + g * g2 + b * g3), 0, 255), clamp(lroundf(r * b1 + g * b2 + b * b3), 0, 255), alpha()); } constexpr Color with_opacity(float opacity) const { VERIFY(opacity >= 0 && opacity <= 1); return with_alpha(static_cast(round(alpha() * opacity))); } constexpr Color darkened(float amount = 0.5f) const { return Color(red() * amount, green() * amount, blue() * amount, alpha()); } constexpr Color lightened(float amount = 1.2f) const { return Color(min(255, (int)((float)red() * amount)), min(255, (int)((float)green() * amount)), min(255, (int)((float)blue() * amount)), alpha()); } Vector shades(u32 steps, float max = 1.f) const; Vector tints(u32 steps, float max = 1.f) const; constexpr Color saturated_to(float saturation) const { auto hsv = to_hsv(); auto alpha = this->alpha(); auto color = Color::from_hsv(hsv.hue, static_cast(saturation), hsv.value); color.set_alpha(alpha); return color; } constexpr Color inverted() const { return Color(~red(), ~green(), ~blue(), alpha()); } constexpr Color xored(Color other) const { return Color(((other.m_value ^ m_value) & 0x00ffffff) | (m_value & 0xff000000)); } constexpr ARGB32 value() const { return m_value; } constexpr bool operator==(Color other) const { return m_value == other.m_value; } enum class HTMLCompatibleSerialization { No, Yes, }; [[nodiscard]] String to_string(HTMLCompatibleSerialization = HTMLCompatibleSerialization::No) const; String to_string_without_alpha() const; ByteString to_byte_string() const; ByteString to_byte_string_without_alpha() const; static Optional from_string(StringView); static Optional from_named_css_color_string(StringView); constexpr HSV to_hsv() const { HSV hsv; double r = static_cast(red()) / 255.0; double g = static_cast(green()) / 255.0; double b = static_cast(blue()) / 255.0; double max = AK::max(AK::max(r, g), b); double min = AK::min(AK::min(r, g), b); double chroma = max - min; if (!chroma) hsv.hue = 0.0; else if (max == r) hsv.hue = (60.0 * ((g - b) / chroma)) + 360.0; else if (max == g) hsv.hue = (60.0 * ((b - r) / chroma)) + 120.0; else hsv.hue = (60.0 * ((r - g) / chroma)) + 240.0; if (hsv.hue >= 360.0) hsv.hue -= 360.0; if (!max) hsv.saturation = 0; else hsv.saturation = chroma / max; hsv.value = max; VERIFY(hsv.hue >= 0.0 && hsv.hue < 360.0); VERIFY(hsv.saturation >= 0.0 && hsv.saturation <= 1.0); VERIFY(hsv.value >= 0.0 && hsv.value <= 1.0); return hsv; } static constexpr Color from_hsv(double hue, double saturation, double value) { return from_hsv({ hue, saturation, value }); } static constexpr Color from_hsv(HSV const& hsv) { VERIFY(hsv.hue >= 0.0 && hsv.hue < 360.0); VERIFY(hsv.saturation >= 0.0 && hsv.saturation <= 1.0); VERIFY(hsv.value >= 0.0 && hsv.value <= 1.0); double hue = hsv.hue; double saturation = hsv.saturation; double value = hsv.value; int high = static_cast(hue / 60.0) % 6; double f = (hue / 60.0) - high; double c1 = value * (1.0 - saturation); double c2 = value * (1.0 - saturation * f); double c3 = value * (1.0 - saturation * (1.0 - f)); double r = 0; double g = 0; double b = 0; switch (high) { case 0: r = value; g = c3; b = c1; break; case 1: r = c2; g = value; b = c1; break; case 2: r = c1; g = value; b = c3; break; case 3: r = c1; g = c2; b = value; break; case 4: r = c3; g = c1; b = value; break; case 5: r = value; g = c1; b = c2; break; } auto out_r = static_cast(round(r * 255)); auto out_g = static_cast(round(g * 255)); auto out_b = static_cast(round(b * 255)); return Color(out_r, out_g, out_b); } constexpr Color suggested_foreground_color() const { return luminosity() < 128 ? Color::White : Color::Black; } private: constexpr explicit Color(ARGB32 argb) : m_value(argb) { } ARGB32 m_value { 0 }; }; constexpr Color::Color(NamedColor named) { if (named == Transparent) { m_value = 0; return; } struct { u8 r; u8 g; u8 b; } rgb; switch (named) { case Black: rgb = { 0, 0, 0 }; break; case White: rgb = { 255, 255, 255 }; break; case Red: rgb = { 255, 0, 0 }; break; case Green: rgb = { 0, 255, 0 }; break; case Cyan: rgb = { 0, 255, 255 }; break; case DarkCyan: rgb = { 0, 127, 127 }; break; case MidCyan: rgb = { 0, 192, 192 }; break; case Blue: rgb = { 0, 0, 255 }; break; case Yellow: rgb = { 255, 255, 0 }; break; case Magenta: rgb = { 255, 0, 255 }; break; case DarkGray: rgb = { 64, 64, 64 }; break; case MidGray: rgb = { 127, 127, 127 }; break; case LightGray: rgb = { 192, 192, 192 }; break; case MidGreen: rgb = { 0, 192, 0 }; break; case MidBlue: rgb = { 0, 0, 192 }; break; case MidRed: rgb = { 192, 0, 0 }; break; case MidMagenta: rgb = { 192, 0, 192 }; break; case DarkGreen: rgb = { 0, 128, 0 }; break; case DarkBlue: rgb = { 0, 0, 128 }; break; case DarkRed: rgb = { 128, 0, 0 }; break; case WarmGray: rgb = { 212, 208, 200 }; break; case LightBlue: rgb = { 173, 216, 230 }; break; default: VERIFY_NOT_REACHED(); break; } m_value = 0xff000000 | (rgb.r << 16) | (rgb.g << 8) | rgb.b; } } using Gfx::Color; namespace AK { template<> class Traits : public DefaultTraits { public: static unsigned hash(Color const& color) { return int_hash(color.value()); } }; template<> struct Formatter : public Formatter { ErrorOr format(FormatBuilder&, Gfx::Color); }; template<> struct Formatter : public Formatter { ErrorOr format(FormatBuilder&, Gfx::YUV); }; template<> struct Formatter : public Formatter { ErrorOr format(FormatBuilder&, Gfx::HSV); }; template<> struct Formatter : public Formatter { ErrorOr format(FormatBuilder&, Gfx::Oklab); }; } namespace IPC { template<> ErrorOr encode(Encoder&, Gfx::Color const&); template<> ErrorOr decode(Decoder&); }