/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2023, Kenneth Myhra * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include namespace AK { // A map datastructure, mapping keys K to values V, based on a hash table with closed hashing. // HashMap can optionally provide ordered iteration based on the order of keys when IsOrdered = true. // HashMap is based on HashTable, which should be used instead if just a set datastructure is required. template class HashMap { private: struct Entry { K key; V value; }; struct EntryTraits { static unsigned hash(Entry const& entry) { return KeyTraits::hash(entry.key); } static bool equals(Entry const& a, Entry const& b) { return KeyTraits::equals(a.key, b.key); } }; public: using KeyType = K; using ValueType = V; HashMap() = default; HashMap(std::initializer_list list) { MUST(try_ensure_capacity(list.size())); for (auto& [key, value] : list) set(key, value); } HashMap(HashMap const&) = default; // FIXME: Not OOM-safe! Use clone() instead. HashMap(HashMap&& other) noexcept = default; HashMap& operator=(HashMap const& other) = default; // FIXME: Not OOM-safe! Use clone() instead. HashMap& operator=(HashMap&& other) noexcept = default; [[nodiscard]] bool is_empty() const { return m_table.is_empty(); } [[nodiscard]] size_t size() const { return m_table.size(); } [[nodiscard]] size_t capacity() const { return m_table.capacity(); } void clear() { m_table.clear(); } void clear_with_capacity() { m_table.clear_with_capacity(); } HashSetResult set(K const& key, V const& value) { return m_table.set({ key, value }); } HashSetResult set(K const& key, V&& value) { return m_table.set({ key, move(value) }); } HashSetResult set(K&& key, V&& value) { return m_table.set({ move(key), move(value) }); } ErrorOr try_set(K const& key, V const& value) { return m_table.try_set({ key, value }); } ErrorOr try_set(K const& key, V&& value) { return m_table.try_set({ key, move(value) }); } ErrorOr try_set(K&& key, V&& value) { return m_table.try_set({ move(key), move(value) }); } bool remove(K const& key) { auto it = find(key); if (it != end()) { m_table.remove(it); return true; } return false; } template Key> requires(IsSame>) bool remove(Key const& key) { auto it = find(key); if (it != end()) { m_table.remove(it); return true; } return false; } template bool remove_all_matching(TUnaryPredicate const& predicate) { return m_table.remove_all_matching([&](auto& entry) { return predicate(entry.key, entry.value); }); } using HashTableType = HashTable; using IteratorType = typename HashTableType::Iterator; using ConstIteratorType = typename HashTableType::ConstIterator; [[nodiscard]] IteratorType begin() { return m_table.begin(); } [[nodiscard]] IteratorType end() { return m_table.end(); } [[nodiscard]] IteratorType find(K const& key) { if (m_table.is_empty()) return m_table.end(); return m_table.find(KeyTraits::hash(key), [&](auto& entry) { return KeyTraits::equals(entry.key, key); }); } template [[nodiscard]] IteratorType find(unsigned hash, TUnaryPredicate predicate) { return m_table.find(hash, predicate); } [[nodiscard]] ConstIteratorType begin() const { return m_table.begin(); } [[nodiscard]] ConstIteratorType end() const { return m_table.end(); } [[nodiscard]] ConstIteratorType find(K const& key) const { if (m_table.is_empty()) return m_table.end(); return m_table.find(KeyTraits::hash(key), [&](auto& entry) { return KeyTraits::equals(entry.key, key); }); } template [[nodiscard]] ConstIteratorType find(unsigned hash, TUnaryPredicate predicate) const { return m_table.find(hash, predicate); } template Key> requires(IsSame>) [[nodiscard]] IteratorType find(Key const& key) { if (m_table.is_empty()) return m_table.end(); return m_table.find(Traits::hash(key), [&](auto& entry) { return Traits::equals(entry.key, key); }); } template Key> requires(IsSame>) [[nodiscard]] ConstIteratorType find(Key const& key) const { if (m_table.is_empty()) return m_table.end(); return m_table.find(Traits::hash(key), [&](auto& entry) { return Traits::equals(entry.key, key); }); } ErrorOr try_ensure_capacity(size_t capacity) { return m_table.try_ensure_capacity(capacity); } void ensure_capacity(size_t capacity) { return m_table.ensure_capacity(capacity); } Optional get(K const& key) const requires(!IsPointer) { auto it = find(key); if (it == end()) return {}; return (*it).value; } Optional get(K const& key) const requires(IsPointer) { auto it = find(key); if (it == end()) return {}; return (*it).value; } Optional get(K const& key) requires(!IsConst) { auto it = find(key); if (it == end()) return {}; return (*it).value; } template Key> requires(IsSame>) Optional get(Key const& key) const requires(!IsPointer) { auto it = find(key); if (it == end()) return {}; return (*it).value; } template Key> requires(IsSame>) Optional get(Key const& key) const requires(IsPointer) { auto it = find(key); if (it == end()) return {}; return (*it).value; } template Key> requires(IsSame>) Optional get(Key const& key) requires(!IsConst) { auto it = find(key); if (it == end()) return {}; return (*it).value; } [[nodiscard]] bool contains(K const& key) const { return find(key) != end(); } template Key> requires(IsSame>) [[nodiscard]] bool contains(Key const& value) const { return find(value) != end(); } void remove(IteratorType it) { m_table.remove(it); } Optional take(K const& key) { if (auto it = find(key); it != end()) { auto value = move(it->value); m_table.remove(it); return value; } return {}; } template Key> requires(IsSame>) Optional take(Key const& key) { if (auto it = find(key); it != end()) { auto value = move(it->value); m_table.remove(it); return value; } return {}; } V take_first() requires(IsOrdered) { return take(begin()->key).release_value(); } V& ensure(K const& key) { auto it = find(key); if (it != end()) return it->value; auto result = set(key, V()); VERIFY(result == HashSetResult::InsertedNewEntry); return find(key)->value; } template V& ensure(K const& key, Callback initialization_callback) { auto it = find(key); if (it != end()) return it->value; auto result = set(key, initialization_callback()); VERIFY(result == HashSetResult::InsertedNewEntry); return find(key)->value; } template ErrorOr try_ensure(K const& key, Callback initialization_callback) { auto it = find(key); if (it != end()) return it->value; if constexpr (FallibleFunction) { auto result = TRY(try_set(key, TRY(initialization_callback()))); VERIFY(result == HashSetResult::InsertedNewEntry); } else { auto result = TRY(try_set(key, initialization_callback())); VERIFY(result == HashSetResult::InsertedNewEntry); } return find(key)->value; } [[nodiscard]] Vector keys() const { Vector list; list.ensure_capacity(size()); for (auto const& [key, _] : *this) list.unchecked_append(key); return list; } [[nodiscard]] u32 hash() const { u32 hash = 0; for (auto const& [key, value] : *this) { auto entry_hash = pair_int_hash(key.hash(), value.hash()); hash = pair_int_hash(hash, entry_hash); } return hash; } template ErrorOr> clone() const { HashMap hash_map_clone; TRY(hash_map_clone.try_ensure_capacity(size())); for (auto const& [key, value] : *this) hash_map_clone.set(key, value); return hash_map_clone; } private: HashTableType m_table; }; } #if USING_AK_GLOBALLY using AK::HashMap; using AK::OrderedHashMap; #endif