Without this, we were in a weird state where LibTimeZone believed it had
TZDB data, but that data wasn't actually available to it. This caused
functions like JS::get_named_time_zone_offset_nanoseconds() to trip an
assertion when entering "new Date();" into the REPL.
These are used by esvu, and it is sad that we don't have macOS binaries
availble for consumption by esvu users. Add a matrix job to handle this
separately from the test262 results.
This adds command line flags for WebDriver to pass its IPC socket path
(if running on Serenity) or its FD passing socket (if running elsewhere)
for the headless-browser to connect to.
Otherwise, we end up propagating those dependencies into targets that
link against that library, which creates unnecessary link-time
dependencies.
Also included are changes to readd now missing dependencies to tools
that actually need them.
We have logic for serenity_generated_sources which works well for source
files that are specified in GENERATED_SOURCES prior to calling
serenity_lib or serenity_bin. However, code generated with
invoke_generator, and the LibWeb generators do not always follow the
pattern of the IDL and GML files.
For the LibWeb generators, we can just add_dependencies to LibWeb at the
time we declare the generate_Foo custom target. However for LibLocale,
LibTimeZone, and LibUnicode, we don't have the name of the target
available, so export the name in a variable to set into
GENERATED_SOURCES.
To make this work for Lagom, we need to make sure that lagom_lib and
serenity_bin in Lagom/CMakeLists.txt call serenity_generated_sources on
the target.
This enables the Xcode generator on macOS hosts, at least for Lagom.
This matches serenity_lib, and consolidates the logic to strip Lib from
the front of the library name for the Lagom export name into one place
at the top of lagom_lib.
Also do this for Shell.
This greatly simplifies the CMakeLists in Lagom, replacing many glob
patterns with a big list of libraries. There are still a few special
libraries that need some help to conform to the pattern, like LibELF and
LibWebView.
It also lets us remove essentially all of the Serenity or Lagom binary
directory detection logic from code generators, as now both projects
directories enter the generator logic from the same place.
By deferring to the CMakeLists in each of these libraries' directories,
we can get rid of a lot of curious GLOB patterns and list removals in
the Lagom CMakeLists.
This file implements the POSIX APIs from <regex.h>, and is not suitable
for inclusion in a Lagom build. If we do include it, it will override
the host's regex functions and wreak havoc if it's resolved before the
host's implementation.
This matches how LibMain is used within Serenity. This commit makes it
possible to build Lagom with LTO. Previously, `serenity_main` functions
would be dead-stripped away, as the linker could prove that nothing from
the executable ever called them.
This is the initial port of Lagom to win32. This will enable developers
to use Lagom as an alternative to vanilla STL/StandardC++Library - which
gives a much richer environment (think QtCore - but modern).
My main incentive - is to have a native Windows Ladybird working.
I am starting with AK, which does not yet fully compile (on mingw). When
AK is compiling (currently fails building StringBuffer.cpp) - I will
continue to LibCore and then the rest of the user space libraries
(excluding the GUI, which will be another different effort).
Most of the code is happily stollen from Andrew Kaster's fork - he
deserves the credit.
Co-authored-by: Andrew Kaster <akaster@serenityos.org>
We won't be able to use local servers on Android without some serious
Android work to create background tasks, so just disable this for now,
as it currently relies on Core::Account to take over from SystemServer.
This code generator no longer creates JS wrappers for platform objects
in the old sense, instead they're JS objects internally themselves.
Most of what we generate now are prototypes - which can be seen as
bindings for the internal C++ methods implementing getters, setters, and
methods - as well as object constructors, i.e. bindings for the internal
create_with_global_object() method.
Also tweak the naming of various CMake glue code existing around this.
IDL function overload resolution requires knowing each IDL function's
parameters and their types at runtime. The simplest way to do that is
just to make the types the generator uses available to the runtime.
Parsing has moved to LibIDL, but code generation has not, since that is
very specific to WrapperGenerator.
For now this is a lagom only application as it is not compatible with
serenity in its current state.
The only change is that it is released under a different license with
permission from all the authors.
Remove the Corrosion dependency, and use the now-builtin
add_jakt_executable function from the Jakt install rules to build our
example application.
By using find_package(Jakt), we now have to set ENABLE_JAKT manually on
both serenity and Lagom at the same time, so the preferred method to do
this for now is:
cmake -B Build/superbuild<arch><toolchain> \
-S Meta/CMake/Superbuild \
-DENABLE_JAKT=ON \
-DJAKT_SOURCE_DIR=/path/to/jakt
Where omitting JAKT_SOURCE_DIR will still pull from the main branch of
SerenityOS/jakt. This can be done after runing Meta/serenity.sh run.
To prepare for placing all CLDR generated data in a new library,
LibLocale, this moves the code generators for the CLDR data to the
LibLocale subfolder.
The FLAC "spec tests", or rather the test suite by xiph that exercises
weird FLAC features and edge cases, can be found at
https://github.com/ietf-wg-cellar/flac-test-files and is a good
challenge for our FLAC decoder to become more spec compliant. Running
these tests is similar to LibWasm spec tests, you need to pass
INCLUDE_FLAC_SPEC_TESTS to CMake.
As of integrating these tests, 23 out of 63 fail. :yakplus:
This is a start to properly letting us cross-compile Lagom where both
the Tools and the BUILD_LAGOM=ON build are using Lagom CMakeLists.
The initial cut allows an Android build to succeed, more or less.
But there are issues with namespace clashes when using FetchContent with
this approach.
Plural rules in the CLDR are of the form:
"cs": {
"pluralRule-count-one": "i = 1 and v = 0 @integer 1",
"pluralRule-count-few": "i = 2..4 and v = 0 @integer 2~4",
"pluralRule-count-many": "v != 0 @decimal 0.0~1.5, 10.0, 100.0 ...",
"pluralRule-count-other": "@integer 0, 5~19, 100, 1000, 10000 ..."
}
The syntax is described here:
https://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax
There are up to 2 sets of rules for each locale, a cardinal set and an
ordinal set. The approach here is to generate a C++ function for each
set of rules. Each condition in the rules (e.g. "i = 1 and v = 0") is
transpiled to a C++ if-statement within its function. Then lookup tables
are generated to match locales to their generated functions.
NOTE: -Wno-parentheses-equality is added to the LibUnicodeData compile
flags because the generated plural rules have lots of extra parentheses
(because e.g. we need to selectively negate and combine rules). The code
to generate only exactly the right number of parentheses is quite hairy,
so this just tells the compiler to ignore the extras.
Add overrides for serenity_bin and serenity_lib to allow the actual
CMakeLists.txt from Userland to be used to build as many services as
possible without adding more clutter to Meta/Lagom/CMakeLists.txt
This matches the target names for the main serenity build, and will make
simplifying the Lagom build much easier going forward.
The LagomFoo name came from a time when we had both library builds in
the same CMake generated project and needed to deconflict the names.