Fixes wpt/png/exif-chunk.html.
At some point there should probably be some mechanism to handle this
outside of the individual decoder plugins. The TIFF decoder seems to
have its own version of this, and as far as I can tell, the JPEG decoder
doesn't handle this at all, even though that's probably the most common
use case for Exif orientations. :^)
These files seem to have been marked as executable by error.
Found by running the command:
find \( -name WPT -or -name Toolchain -or -name Build \) \
-prune -or -executable \! -type d -print \
| grep -Pv '\.(sh|py)$'
This will be the first step is making better use of system libraries
like fontconfig and CoreText to load system fonts for use by the UI
process and the CSS style computer.
This change removes wrappers inherited from Gfx::Typeface for WOFF and
WOFF2 fonts. The only purpose they served is owning of ttf ByteBuffer
produced by decoding a WOFF/WOFF2 font. Now new FontData class is
responsible for holding ByteBuffer when a font is constructed from
non-externally owned memory.
It currently doesn't support animated image.
Note that Gfx::Bitmap has no support for get_pixel when the format is
RGBA8888. This is why it has been removed from the tests.
This matches libwebp (see ZeroFillCanvas() call in
libwebp/src/demux/anim_decode.c:355 and ZeroFillFrameRect() call
in line 435, but in WebPAnimDecoderGetNext()) and makes files
written e.g. by asesprite look correct -- even though the old
behavior is also spec-compliant and arguably makes more sense.
Now nothing looks at the background color stored in the file.
See PR for an example image where it makes a visible difference.
Cherry-picked from serenityos master
276a904d20ffe260b5544a9ace9841d083e0243
We don't need intrinsic scale factors for Gfx::Bitmap in Ladybird,
as everything flows through the CSS / device pixel ratio mechanism.
This patch also removes various unused functions instead of adapting
them to the change.
The color indexing transform shouldn't make single-channel images
larger (by needlessly writing a palette). If there <= 16 colors
in the single channel, it should make the image smaller.
...and use a different color name until a (relatively harmless) bug
writing fully-opaque frames to an animation that also has transparent
frames is fixed. (I've had a local fix for that for a while, but
I'm waiting for #24397 to land.)
To determine the palette of colors we use the median cut algorithm.
While being a correct implementation, enhancements are obviously
existing on both the median cut algorithm and the encoding side.
This is useful to find the best matching color palette from an existing
bitmap. It can be used in PixelPaint but also in encoders of old image
formats that only support indexed colors e.g. GIF.
For example, for 7z7c.gif, we now store one 500x500 frame and then
a 94x78 frame at (196, 208) and a 91x78 frame at (198, 208).
This reduces how much data we have to store.
We currently store all pixels in the rect with changed pixels.
We could in the future store pixels that are equal in that rect
as transparent pixels. When inputs are gif files, this would
guaranteee that new frames only have at most 256 distinct colors
(since GIFs require that), which would help a future color indexing
transform. For now, we don't do that though.
The API I'm adding here is a bit ugly:
* WebPs can only store x/y offsets that are a multiple of 2. This
currently leaks into the AnimationWriter base class.
(Since we potentially have to make a webp frame 1 pixel wider
and higher due to this, it's possible to have a frame that has
<= 256 colors in a gif input but > 256 colors in the webp,
if we do the technique above.)
* Every client writing animations has to have logic to track
previous frames, decide which of the two functions to call, etc.
This also adds an opt-out flag to `animation`, because:
1. Some clients apparently assume the size of the last VP8L
chunk is the size of the image
(see https://github.com/discord/lilliput/issues/159).
2. Having incremental frames is good for filesize and for
playing the animation start-to-end, but it makes it hard
to extract arbitrary frames (have to extract all frames
from start to target frame) -- but this is mean tto be a
delivery codec, not an editing codec. It's also more vulnerable to
corrupted bytes in the middle of the file -- but transport
protocols are good these days.
(It'd also be an idea to write a full frame every N frames.)
For https://giphy.com/gifs/XT9HMdwmpHqqOu1f1a (an 184K gif),
output webp size goes from 21M to 11M.
For 7z7c.gif (an 11K gif), output webp size goes from 2.1M to 775K.
(The webp image data still isn't compressed at all.)
Truncating the value is mathematically incorrect, this error made the
conversion to grayscale unstable. In other world, calling `to_grayscale`
on a gray value would return a different value. As an example,
`Color::from_string("#686868ff"sv).to_grayscale()` used to return
#676767ff.