Previously we would crash the process immediately when a promise
violation was found during a syscall. This is error prone, as we
don't unwind the stack. This means that in certain cases we can
leak resources, like an OwnPtr / RefPtr tracked on the stack. Or
even leak a lock acquired in a ScopeLockLocker.
To remedy this situation we move the promise violation handling to
the syscall handler, right before we return to user space. This
allows the code to follow the normal unwind path, and grantees
there is no longer any cleanup that needs to occur.
The Process::require_promise() and Process::require_no_promises()
functions were modified to return ErrorOr<void> so we enforce that
the errors are always propagated by the caller.
This change lays the foundation for making the require_promise return
an error hand handling the process abort outside of the syscall
implementations, to avoid cases where we would leak resources.
It also has the advantage that it makes removes a gs pointer read
to look up the current thread, then process for every syscall. We
can instead go through the Process this pointer in most cases.
This feels like it was a refactor transition kind of conversion. The
places that were relying on it can easily be changed to explicitly ask
for the ptr() or a new vaddr() method on Userspace<T*>.
FlatPtr can still implicitly convert to Userspace<T> because the
constructor is not explicit, but there's quite a few more places that
are relying on that conversion.
A series of refactors changed Threads to always have a name, and to
store their name as a KString. Before the refactors a StringBuilder was
used to format the default thread name for a non-main thread, but it is
since unused. Remove it and the AK/String related header includes from
the thread syscall implementation file.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
We previously allowed Thread to exist in a state where its m_name was
null, and had to work around that in various places.
This patch removes that possibility and forces those who would create a
thread (or change the name of one) to provide a NonnullOwnPtr<KString>
with the name.
This has several benefits:
1) We no longer just blindly derefence a null pointer in various places
2) We will get nicer runtime error messages if the current process does
turn out to be null in the call location
3) GCC no longer complains about possible nullptr dereferences when
compiling without KUBSAN
Before we start disabling acquisition of the big process lock for
specific syscalls, make sure to document and assert that all the
lock is held during all syscalls.
The entire process is not needed, just require the user to pass in the
Space. Also provide no_lock variant to use when you already have the
VM/Space lock acquired, to avoid unnecessary recursive spinlock
acquisitions.
The Process::Handler type has KResultOr<FlatPtr> as its return type.
Using a different return type with an equally-sized template parameter
sort of works but breaks once that condition is no longer true, e.g.
for KResultOr<int> on x86_64.
Ideally the syscall handlers would also take FlatPtrs as their args
so we can get rid of the reinterpret_cast for the function pointer
but I didn't quite feel like cleaning that up as well.
This adds just enough stubs to make the kernel compile on x86_64. Obviously
it won't do anything useful - in fact it won't even attempt to boot because
Multiboot doesn't support ELF64 binaries - but it gets those compiler errors
out of the way so more progress can be made getting all the missing
functionality in place.
There were a few cases where we could end up logging profiling events
before or after the associated process or thread exists in the profile:
After enabling profiling we might end up with CPU samples before we
had a chance to synthesize process/thread creation events.
After a thread exits we would still log associated kmalloc/kfree
events. Instead we now just ignore those events.
This adds two new arguments to the thread_exit system call which let
a thread unmap an arbitrary VM range on thread exit. LibPthread
uses this functionality to unmap the thread stack.
Fixes#7267.
The current method of emitting performance events requires a bit of
boiler plate at every invocation, as well as having to ignore the
return code which isn't used outside of the perf event syscall. This
change attempts to clean that up by exposing high level API's that
can be used around the code base.
This turns the perfcore format into more a log than it was before,
which lets us properly log process, thread and region
creation/destruction. This also makes it unnecessary to dump the
process' regions every time it is scheduled like we did before.
Incidentally this also fixes 'profile -c' because we previously ended
up incorrectly dumping the parent's region map into the profile data.
Log-based mmap support enables profiling shared libraries which
are loaded at runtime, e.g. via dlopen().
This enables profiling both the parent and child process for
programs which use execve(). Previously we'd discard the profiling
data for the old process.
The Profiler tool has been updated to not treat thread IDs as
process IDs anymore. This enables support for processes with more
than one thread. Also, there's a new widget to filter which
process should be displayed.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
The expression
(u8*)params.m_stack_location + stack_size
… causes UBSan to spit out the warning
KUBSAN: addition of unsigned offset to 0x00000002 overflowed to 0xb0000003
… even though there is no actual overflow happening here.
This can be reproduced by running:
$ syscall create_thread 0 [ 0 0 0 0 0xb0000001 2 ]
Technically, this is a true-positive: The C++-reference is incredibly strict
about pointer-arithmetic:
> A pointer to non-array object is treated as a pointer to the first element
> of an array with size 1. […] [A]ttempts to generate a pointer that isn't
> pointing at an element of the same array or one past the end invoke
> undefined behavior.
https://en.cppreference.com/w/cpp/language/operator_arithmetic
Frankly, this feels silly. So let's just use FlatPtr instead.
Found by fuzz-syscalls. Undocumented bug.
Note that FlatPtr is an unsigned type, so
user_esp.value() - 4
is defined even if we end up with a user_esp of 0 (this can happen for example
when params.m_stack_size = 0 and params.m_stack_location = 0). The result would
be a Kernelspace-pointer, which would then be immediately flagged by
'MM.validate_user_stack' as invalid, as intended.
This was another vestige from a long time ago, when exiting a thread
would mutate global data structures that were only protected by the
interrupt flag.
Make more of the kernel compile in 64-bit mode, and make some things
pointer-size-agnostic (by using FlatPtr.)
There's a lot of work to do here before the kernel will even compile.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.