This avoids the overhead of allocating a new Array on every function
call, saving a substantial amount of time and avoiding GC thrash.
This patch only makes use of Op::Call in CallExpression. There are other
places we should codegen this op. We should also do the same for super
expression calls.
~5% speed-up on Kraken/stanford-crypto-ccm.js
Forcing every function call to allocate a new Array just to accommodate
spread parameters is not very nice, so let's start moving towards making
this a special case rather than the general (and only) case.
The var environments will unwind as needed with the ExecutionContext
and there's no need to include it in the unwind info.
We still need to do this for lexical environments though, since they
can have short local lifetimes inside a function.
This patch fixes an issue where the preview for an filter was always
based on the content bitmap even if the edit mode was set to Mask.
Now the preview is using the content or mask bitmap based on the
current edit mode and therefore generates the correct preview of
what is going to be changed.
This patch removes a todo where the revert for any changes could be
optimized. Previously every single pixel was copied back from the
reference bitmap to the content bitmap. Now the editors content
bitmap is just replaced with the reference bitmap that is a copy
of the unchanged content bitmap.
This patch adds a new Editing-Mask type to layers. This kind of mask
is used to restrict changes on the content bitmap only to areas where
the mask is drawn. The intensity of a pixel change is controlled by the
alpha-value of the mask.
Furthermore a function to invert and clear masks has been introduced.
When a new mask is created for a layer the edit mode of the layer is
also changed to Mask so that the user can immediately start to draw the
mask.
Performing these immediately can introduce a race condition between the
user's signal-related logic and LibLine's own, so defer the handlers to
make sure they run when our terminal IO cannot interfere with the
user's.
Since the relationship between VM and Bytecode::Interpreter is now
clear, we can have VM ask the Interpreter for roots in the GC marking
pass. This avoids having to register and unregister handles and
MarkedVectors over and over.
Since GeneratorObject can also own a RegisterWindow, we share the code
in a RegisterWindow::visit_edges() helper.
~4% speed-up on Kraken/stanford-crypto-ccm.js :^)
While the completion value of a variable declaration is specified to be
empty, we might already have a completion value in the accumulator from
a previous statement. Preserve it so as to avoid clobbering it.
This fixes 6 tests on test262.
This man page was referenced from some places. This is mostly a
condensed version of the POSIX behavior that the system call
implementation already has, only documenting the obviously visible
errors (in source code) we do actually report.
There are at most 576 granule samples/frequency lines, but the side data
can specify that the big_values granule type take up to 1024 samples.
The spec says in 2.4.3.4.6 that we should always stop reading Huffman
data once we have 576 samples, so that is what this change does. I also
add some useful spec comments while I'm here.
The SVGContext is a leftover from when SVG properties were more ad-hoc.
All properties are now (for better or worse) treated as CSS properties
(or handled elsewhere). This makes the SVGContext's fill/stroke
inheritance handling unnecessary.
This is a preparation before we can create a usable mechanism to use
filesystem-specific mount flags.
To keep some compatibility with userland code, LibC and LibCore mount
functions are kept being usable, but now instead of doing an "atomic"
syscall, they do multiple syscalls to perform the complete procedure of
mounting a filesystem.
The FileBackedFileSystem IntrusiveList in the VFS code is now changed to
be protected by a Mutex, because when we mount a new filesystem, we need
to check if a filesystem is already created for a given source_fd so we
do a scan for that OpenFileDescription in that list. If we fail to find
an already-created filesystem we create a new one and register it in the
list if we successfully mounted it. We use a Mutex because we might need
to initiate disk access during the filesystem creation, which will take
other mutexes in other parts of the kernel, therefore making it not
possible to take a spinlock while doing this.
This change was a long time in the making ever since we obtained sample
rate awareness in the system. Now, each client has its own sample rate,
accessible via new IPC APIs, and the device sample rate is only
accessible via the management interface. AudioServer takes care of
resampling client streams into the device sample rate. Therefore, the
main improvement introduced with this commit is full responsiveness to
sample rate changes; all open audio programs will continue to play at
correct speed with the audio resampled to the new device rate.
The immediate benefits are manifold:
- Gets rid of the legacy hardware sample rate IPC message in the
non-managing client
- Removes duplicate resampling and sample index rescaling code
everywhere
- Avoids potential sample index scaling bugs in SoundPlayer (which have
happened many times before) and fixes a sample index scaling bug in
aplay
- Removes several FIXMEs
- Reduces amount of sample copying in all applications (especially
Piano, where this is critical), improving performance
- Reduces number of resampling users, making future API changes (which
will need to happen for correct resampling to be implemented) easier
I also threw in a simple race condition fix for Piano's audio player
loop.
Assertion fails if the point is outside of the rect. This was introduced
in introduced in #18970 and causes serenity to crash when changing to 2x
resolution for a monitor, if the cursor after resizing is outside of
the new screen.
Added test to reproduce.
This turns all errors into either "OOM" or a proper shell error (if
propagation is impossible or meaningless).
Fixes `echo -en '\xfe\x4a' | $SHELL` crashing.
Before this change, we only blurred the shadows which would've been
generated without blur. This meant that we didn't generate a shadow when
the offset was zero, even with blur. However, other browsers generate a
shadow when blur is set.
Instead, always generate a rectangular contour of sufficient thickness,
blur it if needed and blit it into the right position at the very end.
Thanks to the blur radius, we'll have a shadow even when the offset is
zero.
This is a similar strategy to what v8 does. Use the ASAN API function
__asan_addr_is_in_fake_stack to check any fake stack frames associated
with each stack address we scan. This fully allows running test-js -g
with the option detect_stack_use_after_return turned on.
Instead of checking the address of a temporary, grab the address of the
current frame pointer to determine how much memory is left on the stack.
This better communicates to the compiler what we're trying to do, and
resolves some crashes with ASAN in test-js while the option
detect_stack_use_after_return is turned on.
The valid range for temporal values (`nsMinInstant`/`nsMaxInstant`)
means performing nanosecond-valued integers could lead to an overflow.
NB: Only the `roundingMode: "day"` case was affected, as all others were
already performing the division on floating-point `fractional_second`
values. I'm adding `.0` suffixes everywhere to make this fact clearer.
This adds a few local tests as well, as those are tested with sanitizers
enabled by default, unlike test262.
Otherwise, reading will sometimes fail on the Raspberry Pi.
This is mostly a hack, the spec has some info about how the correct
divisor should be calculated and how we can recover from timeouts.
Namely, we previously forgot to configure the SD Host Controller for
4-bit mode after issuing ACMD6, which caused data transfers to fail on
bare metal.