We were rejecting perfectly valid z-index values like '1000' since we
were passing all CSS values through the length parser and unit-less
lengths are not valid in this context.
It's yet another hack for the ad-hoc CSS parser (its days are numbered)
but this makes the top header links on google.com actually work. :^)
Calling Frame::set_size() already triggered a relayout, so calling
layout() again right after meant we did all the work one more time.
Not being dumb like this makes resizing significantly smoother. :^)
Layout was using an outdated viewport rect that we set *after* doing
a layout due to resize. That meant that layout-in-response-to-resize
was always lagging behind the current size of the view.
The root of this problem was how Frame kept both a viewport rect
(with both scroll offset and size) and a frame size. To fix this,
only store the viewport scroll offset, and always use the frame size.
This way they can't get out of sync and the problem goes away. :^)
Fixes#4250.
Instead of flushing the TLB on the current processor first and then
notifying the other processors to do the same, notify the others
first, and while waiting on the others flush our own.
This is how the spec describes it, and it allows sharing data between
multiple typed arrays.
Typed arrays now support constructing from an existing ArrayBuffer,
and has been prepared for constructing from another typed array or
iterator as well.
We should pay more attention to using the well-defined abstract
operations from the spec rather than making up our own, often slightly
different rules. This is another step in that direction.
We have multiple array types now, so ArrayInvalidLength has been
replaced with a generic InvalidLength.
Also fixes a small issue in the Array constructor, it should throw
RangeError for invalid lengths, not TypeError.
Move counting interrupts out of the handle_interrupt method so that
it is done in all cases without the interrupt handler having to
implement it explicitly.
Also make the counter an atomic value as e.g. the LocalAPIC interrupts
may be triggered on multiple processors simultaneously.
Fixes#4297
Previously, in the case of RLE4, parsing took suspiciously long.
What happened was that 'pixel_count' was 255, and 'i' was incremented
by *two* in each iteration, so the for-loop continued until the
entire output buffer was full, and then rejected the RLE data
as bogus.
This little diff allows pixel_count to reach 256, be greater than
pixel_count, and thus terminate the loop in the intended way.
The Audio::Loader class is able to load different types of audio files
by using a generic plugin interface for all file formats. Every new
loader will have to derive from Audio::LoaderPlugin to provide a common
API.
This makes it easy to add support for more audio file formats in the future.
This allows us to use blocking timeouts with either monotonic or
real time for all blockers. Which means that clock_nanosleep()
now also supports CLOCK_REALTIME.
Also, switch alarm() to use CLOCK_REALTIME as per specification.
We need to be able to guarantee that a timer won't be executing after
TimerQueue::cancel_timer returns. In the case of multiple processors
this means that we may need to wait while the timer handler finishes
execution on another core.
This also fixes a problem in Thread::block and Thread::wait_on where
theoretically the timer could execute after the function returned
and the Thread disappeared.
I was looking through the proc folder, noticed this and thought
"why not?"
It's setup as an updating model because of the call count, however,
the call count doesn't appear to be working right now.
We need to call waitpid until no more waitable children are available.
This is necessary because SIGCHLD signals may coalesce into one when
multiple children terminate almost simultaneously.
Also, switch to EventLoop's asynchronous signal handling mechanism,
which allows more complex operations in the signal handler.
We need to call waitpid until no more waitable children are available.
This is necessary because SIGCHLD signals may coalesce into one when
multiple children terminate almost simultaneously.
This fixes random zombie processes sticking around after e.g. closing
Browser.
Also, switch to EventLoop's asynchronous signal handling mechanism,
which allows more complex operations in the signal handler.
- Calling without 'new' is an error
- If the first argument is an object, we need a separate code path to
initialize from TypedArray, ArrayBuffer, Iterable or Array-like
object (marked TODO for now)
- Don't insert values into array if more than one argument is present
(that's not part of the spec)
The current implementation is not entirely correct yet. Two classes have
been added:
- TypedArrayConstructor, which the various typed array constructors now
inherit from. Calling or constructing this class (from JS, that is)
directly is not possible, we might want to move this abstract class
functionality to NativeFunction at a later point.
- TypedArrayPrototype, which the various typed array prototypes now have
as their own prototype. This will be the place where most of the
functionality is being shared.
Relevant parts from the spec:
22.2.1 The %TypedArray% Intrinsic Object
The %TypedArray% intrinsic object:
- is a constructor function object that all of the TypedArray
constructor objects inherit from.
- along with its corresponding prototype object, provides common
properties that are inherited by all TypedArray constructors and their
instances.
22.2.2 Properties of the %TypedArray% Intrinsic Object
The %TypedArray% intrinsic object:
- has a [[Prototype]] internal slot whose value is %Function.prototype%.
22.2.2.3 %TypedArray%.prototype
The initial value of %TypedArray%.prototype is the %TypedArray%
prototype object.
22.2.6 Properties of the TypedArray Constructors
Each TypedArray constructor:
- has a [[Prototype]] internal slot whose value is %TypedArray%.
22.2.6.2 TypedArray.prototype
The initial value of TypedArray.prototype is the corresponding
TypedArray prototype intrinsic object (22.2.7).
22.2.7 Properties of the TypedArray Prototype Objects
Each TypedArray prototype object:
- has a [[Prototype]] internal slot whose value is %TypedArray.prototype%.
22.2.7.2 TypedArray.prototype.constructor
The initial value of a TypedArray.prototype.constructor is the
corresponding %TypedArray% intrinsic object.
- OSv2 DIBs were not checked at all
- Regular Info DIBs had the compression checked after applying a 0xFF mask,
which let many invalid compression values pass.
- There may still be a separate latent bug that causes mask_sizes and mask_shifts to be empty.
This patch adds six of the standard type arrays and tries to share as
much code as possible:
- Uint8Array
- Uint16Array
- Uint32Array
- Int8Array
- Int16Array
- Int32Array