Similar to POSIX read, the basic read and write functions of AK::Stream
do not have a lower limit of how much data they read or write (apart
from "none at all").
Rename the functions to "read some [data]" and "write some [data]" (with
"data" being omitted, since everything here is reading and writing data)
to make them sufficiently distinct from the functions that ensure to
use the entire buffer (which should be the go-to function for most
usages).
No functional changes, just a lot of new FIXMEs.
Before, some loader plugins implemented their own buffering (FLAC&MP3),
some didn't require any (WAV), and some didn't buffer at all (QOA). This
meant that in practice, while you could load arbitrary amounts of
samples from some loader plugins, you couldn't do that with some others.
Also, it was ill-defined how many samples you would actually get back
from a get_more_samples call.
This commit fixes that by introducing a layer of abstraction between the
loader and its plugins (because that's the whole point of having the
extra class!). The plugins now only implement a load_chunks() function,
which is much simpler to implement and allows plugins to play fast and
loose with what they actually return. Basically, they can return many
chunks of samples, where one chunk is simply a convenient block of
samples to load. In fact, some loaders such as FLAC and QOA have
separate internal functions for loading exactly one chunk. The loaders
*should* load as many chunks as necessary for the sample count to be
reached or surpassed (the latter simplifies loading loops in the
implementations, since you don't need to know how large your next chunk
is going to be; a problem for e.g. FLAC). If a plugin has no problems
returning data of arbitrary size (currently WAV), it can return a single
chunk that exactly (or roughly) matches the requested sample count. If a
plugin is at the stream end, it can also return less samples than was
requested! The loader can handle all of these cases and may call into
load_chunk multiple times. If the plugin returns an empty chunk list (or
only empty chunks; again, they can play fast and loose), the loader
takes that as a stream end signal. Otherwise, the loader will always
return exactly as many samples as the user requested. Buffering is
handled by the loader, allowing any underlying plugin to deal with any
weird sample count requirement the user throws at it (looking at you,
SoundPlayer!).
This (not accidentally!) makes QOA work in SoundPlayer.
Percentage line-height values are relative to 1em (i.e the font-size
of the element). We have to resolve their computed values before
proceeding with inheritance.
If normal flow layout has caused us to progress past the current
innermost float in the block axis, we still need to consider the floats
stacked outside of it.
Fix this by always walking the currently stacked floats from innermost
to outermost when placing new floats.
When using the flex shrink factor, the flexible length resolution
algorithm was incorrectly ignoring the `frozen` flag on items and would
update the same items again, causing overconsumption of the remaining
free space on the flex line.
In case flex items had `margin: auto` on the primary flex axis, we were
still also distributing remaining space according to `justify-content`
rules. This lead to duplicated spacing in various places and overflows.
It looks like this issue was observed previously but missidentified
because there was logic to ignore margins at the start and end which
would partially paper over the root cause. However this created other
bugs (like for example not having a margin at beginning and end ;-)) and
I can find nothing in the spec or other browser behaviour that indicates
that this is something that should be done.
Now we skip justify-content space distribution alltogether if it has
already been distributed to auto margins.
The draft CSS-FLEXBOX-1 spec had a more detailed description of this
algorithm, so let's use that as our basis for the implementation.
Test by Aliaksandr. :^)
When resolving these constraints to CSS pixel sizes, we have to resolve
padding-top and padding-bottom against the flex container's *width*,
not its height.
The padding-top and padding-bottom properties are relative to the
*width* of the containing block, not the height.
It's funny how we keep making this same mistake again and again. :^)
We currently fully casefold the left- and right-hand sides to compare
two strings with case-insensitivity. Now, we casefold one code point at
a time, storing the result in a view for comparison, until we exhaust
both strings.
This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
This was preventing some unqualified emoji sequences from rendering
properly, such as the custom SerenityOS flag. We rendered the flag
correctly when given the fully qualified sequence:
U+1F3F3 U+FEOF U+200D U+1F41E
But were not detecting the unqualified sequence as an emoji when also
filtering for emoji-presentation sequences:
U+1F3F3 U+200D U+1F41E
You can generate one by using `cjpeg` with the -scan argument.
This image has been generated with the following scan file:
0 1 2: 0 0 0 0;
0: 1 9 0 0;
2: 1 63 0 0 ;
1: 1 63 0 0 ;
0: 10 63 0 0;
For example, the code point U+002F could be encoded as UTF-8 with the
bytes 0x80 0xAF. This trick has historically been used to bypass
security checks.
This is needed to have code for creating an in-memory sRGB profile using
the (floating-ppoint) numbers from the sRGB spec and having the
fixed-point values in the profile match what they are in other software
(such as GIMP).
It has the side effect of making the FixedPoint ctor no longer constexpr
(which seems fine; nothing was currently relying on that).
Some of FixedPoint's member functions don't round yet, which requires
tweaking a test.
This is not guaranteed to always work correctly as ArgsParser deals in
StringViews and might have a non-properly-null-terminated string as a
value. As a bonus, using StringView (and DeprecatedString where
necessary) leads to nicer looking code too :^)
`consume_until(foo)` stops before foo, and so does
`ignore_until(Predicate)`, so let's make the other `ignore_until()`
overloads consistent with that so they're less confusing.
This commit moves the implementation of getopt into AK, and converts its
API to understand and use StringView instead of char*.
Everything else is caught in the crossfire of making
Option::accept_value() take a StringView instead of a char const*.
With this, we must now pass a Span<StringView> to ArgsParser::parse(),
applications using LibMain are unaffected, but anything not using that
or taking its own argc/argv has to construct a Vector<StringView> for
this method.
The name "initial containing block" was wrong for this, as it doesn't
correspond to the HTML element, and that's specifically what it's
supposed to do! :^)
This type of image isn't common, and you can probably only find one by
generating it yourself. It can be done using `cjpeg` with the -scan
argument.
This image has been generated with the following scan file:
0: 0 63 0 0;
1: 0 63 0 0;
2: 0 63 0 0;
Nobody made use of the ErrorOr return value and it just added more
chance of confusion, since it was not clear if failing to sniff an
image should return an error or false. The answer was false, if you
returned Error you'd crash the ImageDecoder.
The output of the DeprecatedString::bijective_base_from() is now
correct for numbers larger than base^2.
This makes column names display correctly in Spreadsheet.
Turns out extended-lossless-animated.webp did have a loop count of 0.
So I opened it in Hex Fiend and changed the byte at position 42
(which is the first byte of the little-endian u16 storing the loop
count) to 0x2A, so that the test can compare the loop count to something
not 0.
Imported functions in Wasm may throw JS exceptions, and we need to
preserve these exceptions so we can pass them to the calling JS code.
This also adds a `assert_wasm_result()` API to Result for cases where
only Wasm traps or values are expected (e.g. internal uses) to avoid
making LibWasm (pointlessly) handle JS exceptions that will never show
up in reality.