This changes LibRegex to parse the property escape as a Variant of
Unicode Property & General Category values. A byte code instruction is
added to perform matching based on General Category values.
This supports some binary property matching. It does not support any
properties not yet parsed by LibUnicode, nor does it support value
matching (such as Script_Extensions=Latin).
When the Unicode flag is set, regular expressions may escape code points
by surrounding the hexadecimal code point with curly braces, e.g. \u{41}
is the character "A".
When the Unicode flag is not set, this should be considered a repetition
symbol - \u{41} is the character "u" repeated 41 times. This is left as
a TODO for now.
When the Unicode option is not set, regular expressions should match
based on code units; when it is set, they should match based on code
points. To do so, the regex parser must combine surrogate pairs when
the Unicode option is set. Further, RegexStringView needs to know if
the flag is set in order to return code point vs. code unit based
string lengths and substrings.
This commit makes LibRegex (mostly) capable of operating on any of
the three main string views:
- StringView for raw strings
- Utf8View for utf-8 encoded strings
- Utf32View for raw unicode strings
As a result, regexps with unicode strings should be able to properly
handle utf-8 and not stop in the middle of a code point.
A future commit will update LibJS to use the correct type of string
depending on the flags.
The C interface (posix interface?) for regexes has no "initialize"
function, only a free function. The comment in regcomp in
LibRegex/C/Regex.cpp notes that calling regcomp without a regfree is an
error, and will leak memory. Every single time regcomp is called on a
regex_t*, it will allocate new memory.
Make sure that all the regcomp calls are paired with a regfree in the
tests program